Three-dimensional numerical simulation tool for the optimization of electromagnetic force feedback actuators

In applications, such as pilot training, the cost and risk of injury can be reduced by using simulation tools. Recently, Iris Dynamics Ltd. has developed a competitively priced controller for aircraft simulation that produces force feedback on the user. Their products are currently used in both pilot training and gaming. When scaling their technology to larger forces they encounter problems of severe heating and requiring large magnets that are unsafe and difficult to handle. To solve these problems, this project will develop the mathematical theory needed for optimization of heat management.

Agent-based scheduling in community health care

In this project, the intern will design a community health care scheduling system for the allocation of home visits to care givers in community health care. The system adopts an agent-based distributed system architecture which take patients scheduling preferences on time, location and care givers into account when assigning care givers to home visit appointments. In addition, the system will also provide care givers with the opportunity to express their preferences and availability constraints in taking service appointments.

Fast and robust real-time precise point positioning

Current real-time precise point positioning (PPP) systems still suffer significant challenges. One is its long position convergence time necessary before precise position solutions become obtainable. Another is its sensitivity to the loss/latency of high-frequency precise orbit and clock corrections, resulting in degraded performance. Those challenges have limited PPP's adoption in many applications. This project aims to develop a fast and robust real-time PPP system.

Validation of a Machine Vision-based System for the Recognition of Indian Coins

Counting coins, with speed and accuracy, has been a challenging issue for banks and stores. People used to count coins manually before the arrival of coin counting machines. The process of counting coins manually is a very time consuming and tedious job. Moreover, mistakes are likely to occur due to various reasons such as fatigue, eye tiredness and too many coins of nearly same shape and size cause confusion in sorting and counting. Coin sorters are common in North America and can be found in most commercial banks and even some grocery stores.

A fully customized image sensor for fluorescence imaging in biomedicine

Customized image sensors will be designed by EnviroSen specifically for advanced microscopes used in biomedical imaging. The goal is to develop image sensors with improved efficiency, image resolution and speed compared to existing technologies for novel microscopes for fluorescence lifetime imaging. The McMaster Biophotonics group has recently developed a novel microscope that is capable of detecting fluorescence lifetimes of biological samples with 400 times improvement in image acquisition speed.

Smart fusion of multi-sensors for UAVs Navigation

Nowadays, there is a rapid increase in the use of Unmanned Aerial Vehicles (UAVs) for commercial and civil applications. Fully autonomous or remotely controlled UAVs requires a reliable and continuous navigation system providing meter level accuracy. The cost, size, and power demand of navigation systems providing this level of accuracy preclude their use on commercial UAVs. To provide a viable and alternative option, this research will focus on developing a navigation system for UAVs that minimizes costs, while maintaining reasonable performance standards.

Prototype of a CHP system based on an upgraded gravity-feed wood-pellet furnaceintegrated with a steam-powered micro turbine for small- to mid-scale applications usingCFD simulation and experimental 2

Biomass combustion is used to generate combined heat and power (CHP). The combustion furnace of this study (WiseWay) has been providing heat in small scales using wood pellets. The target of this project, however, is to upgrade the stove’s design (for larger scale purposes and other biomass types) and integrate it with a steam microturbine (NextGrid). The resulting system is attractive to the environment and economy because it provides heat and electricity in one package, at a cheaper price compared with oil and gas, with less pollutants emitted.

CryoDrive: The effects that implementation of cryogenic engines would have on underground mining processes

Cryogenic engines, such as the Dearman engine, produce work and substantial cooling with zero emissions at the point of use, due to their liquid nitrogen ?fuel? supply. Background work has shown that technically, (power, turn down ratio, responsiveness, torque), there are few identifiable factors that would prevent this type of engine from being very effective if installed in underground mining vehicles.

3-D UAV Magnetometry for Improved Target Characterization in Mineral Exploration

Geophysical exploration is one of the primary forms of preliminary site investigation used to characterize ore potential and the economic viability of newly discovered mineral deposits. The current platforms for collecting magnetic data include dense coverage but low resolution airborne surveys and high resolution but low coverage terrestrial surveys. The recent
proliferation of Unmanned Aerial Vehicles (UAV) offers an opportunity to fill the observation gap inherent in conventional
survey methods.

Foundation design system for FortisBC’s power poles

Traditional design method for the foundation of the transmission poles simply assigns a standard set of depths based on the length and diameter of poles. Although, this method has proven to be conservative and reliable, but it does not incorporate site-specific soil properties, water table, and weather conditions in its calculations. As a result, a new foundation design system which will integrate site specific conditions for each pole will provide more safe, economical, and reliable performance of transmission poles for the long-term benefit of FortisBC.