Upgrading of Hydrofaction™ Oil to transport fuel blendstock

Hydrofaction™ is Steeper Energy’s proprietary hydrothermal liquefaction technology that converts low value biomass residues to renewable crude oil using supercritical water and homogeneous catalysis. Steeper Energy Canada (SEC) is focused on identifying optimal pathways for upgrading Hydrofaction™ Oil into renewable diesel and jet fuels. Amidst plummeting crude oil prices, such renewable fuels still command attractive ‘green’ economic premiums as well as policy support for their climate and rural development deliverables.

Upgrading of heavy and high-contaminant Hydrofaction™ Oil, to fuels blendstock with the use of Catalytic Steam Cracking

The Project’s objective is to continue the upgrading work executed in the previous MITACS Converge project with a larger focus on more challenging biocrude oils such as heavy fractions, high viscosity, high nitrogen, high ash oils that are produced from feedstocks such as “feed gate residues” in the form of manures, biosludges and organics from municipal waste. The performance objective remains to optimize and scale up the upgrading of Hydrofaction™ Oil to blendstocks for transport fuels.

Upgrading of heavy and high-contaminant Hydrofaction™ Renewable Crude Oil, to transport fuel blendstock.

The Project’s objective is to continue the upgrading work executed in the previous MITACS Converge project with a larger focus on more challenging biocrude oils such as heavy fractions, high viscosity, high nitrogen, high ash oils that are produced from feedstocks such as “feed gate residues” in the form of manures, biosludges and organics from municipal waste. The performance objective remains to optimize and scale up the upgrading of Hydrofaction™ Oil to blendstocks for transport fuels.

Operation Strategies for Energy Storage Systems in a Wind Park

The Wind Energy Institute of Canada has installed a large-scale wind power and energy storage systems. The institute’s goal is to investigate the wind integration techniques and to increase understanding of the industry for energy storage systems. The objective of this project is to demonstrate and evaluate the capability of energy storage system for shifting wind energy over time and providing ancillary services. Multiple functions of energy storage systems can bring more value to them and justify their high capital costs.

Graphene-Oxide Strengthened Separator to Suppress Zinc Dendrites

In this research project, the separator of rechargeable hybrid aqueous batteries (REHABs) is mechanically strengthened with graphene oxide derivatives. ReHABs comprise of a lithium intercalation cathode, zinc anode and an aqueous electrolyte. One of the problems with current ReHABs is the zinc dendritic growth and propagation from the anode, which significantly reduces its operating lifetime. After cycles of charge/discharge, these dendrites grow and propagate through the separator and eventually reach the cathode, thus shortening the battery.

Acoustics Modeling of ecoCUBE

Emissions control is an important part of any environmental policy. However, in dense urban environments and other locations, it is important to deal with sound as well. To ensure effective pollutant mitigation while also ensuring minimal acoustic disturbance, it is necessary to look at computer models that look at these factors simultaneously. This work will provide SPI with tools necessary for acoustic models while ensuring that their current products meet environmental requirements.

Life-cycle cost analysis of compressed air energy storage systems

The proposed internship aims to study how the performance and the reliability of mechanical energy storage systems influence their life-cycle cost (LCC), including the acquisition cost, the maintenance, and the energy costs. First, the effect of the variation of the design parameters on the performance and acquisition cost of the product will be assessed. Second, the effect of materials and processes on the reliability and the LCC of product will be studied. Lastly, the energy cost associated with the operation of the product will be analyzed.

Development of improved condensing system for biomass pyrolysis process

ABRI-Tech and Memorial University (MUN) have been collaborating to optimize ABRI-Tech’s pyrolysis system to convert woody biomass (i.e. demolition wood waste, sawmill residues, forest residues, agricultural and other residues) to bioproducts.

Evaluating The Microbial Function and Community Dynamics of BIOCORD Technology in a Full Scale waste water treatment Plant in Dundalk County

The Canadian government has increased its focus on regulating wastewater to the environment. The advent of new regulations has resulted in many municipalities requiring substantial upgrades to minimize release of nutrients promoting eutrophic water bodies. Traditional wastewater treatment technologies are in some cases cost prohibitive. Bishop Water Technologies (BWT) provides an ecofriendly and cost-effective technology for treating Canadian wastewater (municipal and industrial) while removing nutrients to rivers and lakes.

Performance Based Seismic Design Guidelines for Sprayed-FRP Retrofitted Circular Reinforced Concrete Bridge Columns

The proposed study will develop seismic design guidelines for retrofitting deficient concrete bridge columns with sprayed fiber reinforced plastic (FRP). Seismically deficient bridge columns (with different aspect ratios and transverse reinforcement ratios) retrofitted with composites will be tested under reverse cyclic loading. The tests will determine various damage states in terms of strain and drift.

Pages