Design of an EV Charging Infrastructure: DC Grid for High Density Plug-in Electric Vehicle Charging and other DC Loads

West 5 community in London, Ontario, will pursue high penetration of electric vehicles, and is exploring an innovative marketing program of including them with the sale of each new condominium unit. The primary objective of this project is to determine an economical approach to create an acceptable infrastructure for these electric vehicles that will be desired by the community. The study will evaluate how to improve the efficiency of using Solar Energy to charge vehicles’ battery and for other DC loads in the London West 5 community.

Intelligent Residential Energy Management Utility Controller

To research, design, and develop a network communication and control modules that integrate any residential HAVC control system with a utility energy management user interface. Developed signal modulation scheme will be implemented on development testing board. Device will network with all utilities for gas, water, and electricity.

Oil and lipid improvements in field pea to develop a non-traditional oilseedcrop

It has been noted in recent studies that provided an increase in the lipid content of the field pea (Pisum Sativum L.) through genetic manipulation, it can be used as a viable commercial alternative to conventional oilseed crops, which include canola and soybean. Genetic transformants with high lipid content can be created in the McGill University laboratories but its commercial viability needs to be tested with an industry partner.

Calibration of a Novel Orifice Plate Flow-meter

Accurate measurements of mass flow rate in a pipe is crucial to virtually every industrial process where a fluid is moved from place to place. The velocity measured in a pipe is often determined by measuring the pressure drop over an orifice plate. Once this orifice plate is properly calibrated, the velocity and in turn, the mass flow through the pipe can be calculated. A downside of the orifice plates is that the plates need to be calibrated. Proper calibration of the orifice plate is essential so that that mass flow rate can be accurately predicted using the pressure drop measurements.

Environmental and social risk assessment to support informed collaborative decision making for vegetation management of northern Rights-of-Way

Integrated Vegetation Management (IVM) is an approach that utility companies can use to manage vegetation under or near transmission lines and has been successfully applied in southern jurisdictions. IVM requires practitioners to understand and manipulate plant communities to meet management objectives, such as maintaining a low growing plant communities that help prevent the regrowth of trees.

Comparative Analysis of Milking Systems in Nova Scotia to improve efficiency and sustainability of water resource

This project will provide a detailed evaluation of the energy, water and labour requirements of the four different types of milking systems used in Nova Scotia. Nova Scotia currently has 36 robotic milking systems installed with more expected in the near future. It is generally considered that robotic systems use more water than free stall systems, however tie stall systems use less than free stall. If the industry is moving to high water use systems then such evaluations are important to ensure a sustainable and responsible approach to water use if achieved.

Social and informational strategies for reducing electricity and natural gas consumption in multi-unit residential buildings

The proposed research will attempt to help residents reduce energy use in apartment buildings. The intern will provide residents with energy use feedback that shows their building’s energy use compared to a neighboring building. Buildings that reduce energy use will receive encouragement to continue conserving. The intern will work with two partnering utilities companies, FortisBC and BC Hydro. These partners will help provide energy use data for each building during the project.

Stochastic optimization of a hydroelectric production system for the aluminium industry

Rio Tinto operates aluminium plants in Saguenay that are powered by their hydroelectric system. An efficient management of water available in the system is primordial to ensure energy supply to the aluminium smelters. This quantity is uncertain since the exact inflows in the reservoirs are unknown when decisions are taken. Stochastic optimization is used to make decisions under uncertainty. Mid-term optimization models determine reservoir volumes while short-term models dispatch the available water as efficiently as possible between the power plants and turbines in the system.

Optimal Two-Dimensional Energy Management of Grid-Connected Thermal/Electrical Hybrid Energy System

This project is designated to develop a next generation optimal two-dimensional energy management algorithm for a novel grid-connected thermal/electrical hybrid energy system. On-site implementation of the model and algorithm will be phased into a real community at an undisclosed location for performance evaluation.

Aeration of hydraulic turbines for increased dissolved oxygen

In warm climates warm temperatures cause thermal stratification in hydropower reservoirs inhibiting mixing and leading to deoxygenation of waters at depth (hypolimnium). Turbines withdrawing water at depth result in low dissolved oxygen (DO) in the downstream flow having a large negative impact on the downstream riverine ecosystem. Legislation in the USA and elsewhere now requires hydropower operators to guarantee meeting minimum DO limits in downstream flows.

Pages