Development of Lipid Nanoparticle Reagents for Functional Genomics in Difficult-to-Transfect Cells In Vitro

The objective of this project is to develop lipid nanoparticle (LNP) reagents for the delivery of nucleic acids to turn off, or turn on target genes in “hard-to-transfect” neurons and stem cells in vitro and in vivo. A recent report (BCC Research, April 2011) observed that "51% of researchers employ cell-based techniques to perform transfection routinely.

Optical transistors and nano-features for security applications

We study a novel type of optical transistors using metallic nanohole arrays. The transistors operate based on strong coupling between surface plasmon polaritons and excitons via the metallic nanofeatures. One such transistor can act as a control unit, a photo-detector or a modulator and can open innovative practical applications in many fields. The physical structures of the transistors are flexible, light weight and ultrathin, so that they can be integrated in large scale with other types of thin-film optoelectronic components.

Development of Lipid Nanoparticle Reagents for Functional Genomics in Difficult-to-Transfect Cells In Vitro

The objective of this project is to develop lipid nanoparticle (LNP) reagents for the delivery of nucleic acids to turn off, or turn on target genes in “hard-to-transfect” neurons and stem cells in vitro and in vivo. A recent report (BCC Research, April 2011) observed that "51% of researchers employ cell-based techniques to perform transfection routinely. Although transfection techniques have been available for many years ….this procedure faces challenges such as the efficiency of gene introduction and its toxicity in cells." With an estimated market of $1.9 billion by 2016 this project will help explore high value market niche that is poised for substantial growth. It will leverage clinical grade, proprietary LNP reagents, a novel proprietary microfluidic-based manufacturing LNP technology, and a unique mechanism of action that maximizes LNP potency by combining broad expertise in technology development and commercialization from the University of British Columbia, and Precision NanoSystems Inc. (PNI).

Mapping Ontario’s NanoTechnology Industry

The purpose of this research project is to collect data on the actors with an interest in nanotechnology – including suppliers, users, researchers, associations and others in order to better understand the networks of innovation and to support NanoOntario’s efforts to facilitate the development of innovation networks and advance nanotechnology.

Microchannel Simulations with the Lattice Boltzmann Method

The nanofluidics and microfluidics simulations and experiments are becoming more and more popular nowadays. Such devices work on microscale to imitate macroscale operations but on a cheaper and faster basis. The good examples are lab-on-chips which perform DNA tests much faster and much cheaper than their large anologues. Thus, the reliable and robust simulations of micro devices are in high demand. One of such examples is multiphase simulations of fluid flow inside the capillaries.

Motion Frameworks for Physical Expression

The intern will be porting and extending a tool for detecting and classifying qualities of human movement which is then subsequently fed to a realtime generative visualization system as part of an artistic process. The classification scheme is based on Laban Effort qualities. The system uses accelerometers and a neural network to recognize and differentiate qualities of movement by a performer.

Investigation of single nanoparticle properties by scanning probe microscopy and Raman spectroscopy

This project consists of two parts: the synthesis of a variety of nanoparticles using a technique we have developed recently, and the study of individual nanoparticles to examine their properties and polydispersity. Both parts carry major challenges and present unique opportunities for research. The eventual goal of our program is to be able to design nanomaterials with desirable properties in a controlled manner.

Pages