Prototype of a CHP system based on an upgraded gravity-feed wood-pellet furnaceintegrated with a steam-powered micro turbine for small- to mid-scale applications usingCFD simulation and experimental 2

Biomass combustion is used to generate combined heat and power (CHP). The combustion furnace of this study (WiseWay) has been providing heat in small scales using wood pellets. The target of this project, however, is to upgrade the stove’s design (for larger scale purposes and other biomass types) and integrate it with a steam microturbine (NextGrid). The resulting system is attractive to the environment and economy because it provides heat and electricity in one package, at a cheaper price compared with oil and gas, with less pollutants emitted.

Communication assisted hybrid overcurrent-transient directional protection scheme for active distribution networks

With worldwide efforts to increase the utilization of renewable energy, traditional power distribution networks are being transformed into active distribution networks with the interconnection of distributed generation. The status of DGs connected to an active distribution network can change frequently, and this creates many challenges to network protection. The aim of this project is to implement a new protection solution for active distribution systems and microgrids in hardware and validate its performance.

Investigations into the stability of large power systems with embedded power electronic subsystems using frequency impedance scanning

In this study, an advanced frequency scanning method is used to extract the frequency dependent network equivalent (FDNE) impedance characteristic of a power electronic subsystem such as an HVDC transmission system or FACTS device including its controls. This is achieved by simulating it in the time domain on an EMT program, and exposing it to an energy dispersed chirp disturbance which has a broad harmonic spectrum. The impedance (or admittance) of this subsystem at the given operating point can then be determined using a Discrete Fourier Transform.

Identification of Blood Biomarkers for Diagnosis of Peripheral Arterial Disease

Fasting blood samples from persons with Peripheral Arterial Disease (PAD) and healthy individuals were previously collected during a prior Mitacs project.
A comparative analysis of the blood samples by metabolomics will be performed to identify potential biomarkers.
The intern will assist with the necessary correlation analysis for selecting compounds capable of serving as blood biomarkers for PAD.
Koven expects to directly benefit from the outcome(s) of this research by having the opportunity to commercialize any promising blood biomarker(s) into a diagnostic kit for early diagnosis of PAD.

Identification of copy number variation biomarkers in patients with inflammatory bowel disease

Copy number variations (CNVs) are an important type of structural variation affecting pathogenesis of complex diseases, such as inflammatory bowel disease (IBD). Accurate detection of genomic regions with CNVs is crucial for understanding the etiology of IBD, as these regions contain likely drivers of disease development. Microarray technology provides single-nucleotide resolution genomic data and is considered one of the best measurement technologies to detect CNVs. This project will identify and characterize CNV in 340 IBD patients in Manitoba.

Optimizing Natural Fibre Quality for Industrial Applications

Natural fibres are abundant in Canada and have the potential to be used in a wide variety of biocomposites and industrial bioproducts. In order to develop a thriving biomaterials sector, the quality and consistency of this vast resource must be continually assessed and monitored to ensure a quality product can be delivered to end-users on a consistent basis.

Enhancing water stress tolerance in soybean through phytoglobin manipulations - Year two

The purpose of the project is to generate soybean plants able to tolerate whole plant submergence and waterlogging (soil submergence). This will be achieved by inducing Pgb, a gene normally present in soybean and known to confer tolerance to excessive humidity, through genetic manipulations. Correlative studies between Pgb expression and performance under excessive water conditions will also be conducted in commercial varieties of soybean. Similar studies will be conducted to assess the effect of altered Pgb level to drought stress.

Real-Time Modeling and Simulation of Alternative Modular Multilevel Converter Topologies

By creating real-time and hardware porotypes, the proposed research provides opportunities for better investigation of these converters and for development of advanced and effective methods for their control. The three interns that will be trained during this research partnership will gain in-depth knowledge of modern power system equipment and knowledge of the latest developments in real-time simulation of such systems.

Evaluation of Ion-Exchange and Nanofiltration as Effective Methods for the Removal of Trihalomethanes Pre-cursors at the Waterhen Water Treatment Plant

This project aims to establish an ion-exchange/nanofiltration pilot study at the Waterhen water treatment plant. A natural result of the chlorination disinfection process in water treatment is the formation of disinfection by-products (DBP), a family of known carcinogens. This project aims to limit the formation of these DBP by removal of their precursors using the newly implemented pilot system. KGS Group is a contributing partner to this project, and will benefit from the interaction with the University and the expertise and the analysis that they have to offer.

Power Flow control in HVDC Grid and its effect on the system stability of underlying AC network

The share of Renewable Energy (RE) resources in overall power generation has grown over the years. Since these RE resources are located at places which are away (off-shore, desert) from the load centres, efficient and reliable power transmission to load centres is extremely important. High Voltage Direct Current (HVDC) transmission has evolved as the preferred efficient way to transmit large amount of power over long distances. It is proposed to interconnect HVDC transmission networks to form a HVDC grid for increasing efficiency and reliability.