The ability to hear, and the quality of our hearing, depends on the health of the eardrum. Eardrum perforations due to diseases and accidents can be treated using grafts, such as autologous grafts, allografts and xenografts. These replacements suffer from various limitations such as donor site morbidity, long operation time and healing time, and risk of infection transmission, and more importantly, none of these grafts are able to replicate the complex microanatomy for sound quality reproduced by the native eardrum.
Bacterial cellulose (BC) is a natural polymer produced by certain bacteria in the form of nanofiber. Being a natural nanobiomaterial, it has been investigated for a broad range of applications ranging from headphone diaphragm to wound dressing and medical implant. The biochemical process for BC production using the well-established bacterium, Gluconacetobacter xylinus, is limited by the kinetics and oxygen availability resulting in a modest yield and long production time. In this project, we will investigate a recently discovered facultative bacterium for BC production.
The ability to hear, and the quality of our hearing, depends on the health of the eardrum. Eardrum perforations due to diseases and accidents can be treated using grafts, such as autologous grafts, allografts and xenografts. These replacements suffer from various limitations such as donor site morbidity, long operation time and healing time, and risk of infection transmission, and more importantly, none of these grafts are able to replicate the complex microanatomy for sound quality reproduced by the native eardrum.
Bacterial cellulose (BC) is a natural polymer produced by certain bacteria in the form of nanaofiber. Being a natural nanobiomaterial, it has been investigated for a broad range of applications ranging from headphone diaphragm to wound dressing and medical implant. The biochemical process for BC production using the well established bacterium, A. xylinum, is limited by the inherent kinetics and oxygen availability resulting in a relatively modest yield and high production cost. In this project, we will be investigating a recently discovered facultative bacterium for BC production.
Join a thriving innovation ecosystem. Subscribe now