Results from a state-of-the-art regional climate model will be used to analyze properties of near-surface winds (speed, direction, power, and variability in time) in selected regions of southern British Columbia. Station observations taken over recent decades will be used to develop a relation between model output fields and wind characteristics that can be used to deduce wind properties at station locations in any future period.
Trees uprooted or broken during severe wind events routinely cause power outages in BC. Some researchers believe that climate change will result in more storms in BC. We will investigate the weather conditions that lead to strong winds. Using BC Transmission Corporation’s power outage database, we will examine patterns of outages in space and time, identify the weather, terrain and vegetation conditions associated with these outages, and produce models that will predict the likelihood of an outage at a given location.
The goal of this internship project is to develop a system for numerical modelling of the weather conditions contributing to the heightened risk of transmission system outages. A regular weather forecasting will be enhanced by specific models of the risk increasing factors, such as strong winds, freezing rain or lightening. The enhanced model will help to identify the time and location where hazardous situations are likely to occur, allowing users to make informed decisions regarding potential risk sectors and planning future expansions of existing transmission networks.
Join a thriving innovation ecosystem. Subscribe now