A Regular Solution Based Model for Evaluating Asphaltene Stability of Upgraded Heavy Oils - Year two

Most of the heavy oil and bitumen produced in Western Canada is transported through pipelines to refineries in North America. Prior to transportation, the high viscosity of those fluids must be reduced by either dilution with a light solvent or upgrading. The high costs associated with handling diluents has increased the interest in upgrading; that is, the thermal conversion of high viscosity heavy oil or bitumen into a less viscous product.

An Integrated model of Geomechanics and a Multiporosity Reservoir Simulator to Investigate Improved Recovery Techniques in Shale Reservoirs-Part 2

Shale reservoirs have become a very important source of hydrocarbons, especially in North America. Shales are rocks with very low permeability and therefore, produce the hydrocarbons stored in them is difficult. In order to do it, oil companies have to inject high pressurized fluids to break the rock. But, by using this unique strategy, most hydrocarbons are being left in the subsurface. This work aims to use mathematical and numerical models to investigate different methods that can lead to recover a bigger portion of the hydrocarbons stored in shale reservoirs.

Pore Pressure Prediction, Hydraulic Fracture Propagation and Huff-and-Puff Gas Injection in Multiple-Porosity Shale Reservoirs

Shale reservoirs store gigantic volumes of petroleum (oil and gas). However, because of the complex nature of the reservoir rock, it is difficult to recover the oil and/or gas stored in shales. Under normal conditions, it is possible to extract only as much as 10% of the resources in place, thus leaving behind a huge potential that promises to satisfy the energy needs of Canada for several decades.

A Regular Solution Based Model for Evaluating Asphaltene Stability of Upgraded Heavy Oils

Most of the heavy oil and bitumen produced in Western Canada is transported through pipelines to refineries in North America. Prior to transportation, the high viscosity of those fluids must be reduced by either dilution with a light solvent or upgrading. The high costs associated with handling diluents has increased the interest in upgrading; that is, the thermal conversion of high viscosity heavy oil or bitumen into a less viscous product.

Operating Strategy for Electromagnetic-based Thermal Recovery Method

Canada has the third largest oil reserves in the world, mostly in oil sands located in the northern Alberta, which is estimated to be 166 billion barrels. Steam Assisted Gravity Drainage (SAGD) has been the only commercially viable in-situ recovery method available to date. Application of SAGD is known to be energy intensive and has associated environmental impacts. Electromagnetic heating (EMH) has been the focus of ever-increasing theoretical and experimental studies to examine if it can be used to heat up the geomaterials in field scale.

Extended Technology Assessment of Advanced In-situ Recovery Methods for Oil Sands

In-situ recovery methods for oils sands are applied to reservoirs containing bitumen that are too deep for mining. To date there has been only one commercially viable in-situ recovery method, Steam-Assisted Gravity Drainage (SAGD), involving high pressure steam injection and bitumen production using horizontal well pairs located near the base of oil sands formations. While SAGD has enabled conversion of significant resources to reserves (about 170 billion barrels), SAGD has many economic and environmental limitations.