Characterizing the sources of methane, CO2, and hydrogen sulphide presence during thermal oil recovery operations

Greenhouse gas (GHG) emissions contribute to a global warming trend associated with climate change. Methane is a potent GHG with a global warming potential 25 times that of Carbon Dioxide over a 100-year period. Gas migration /Surface casing vent flows from subsurface to surface is a well-known issue; however, characterizing the source zone(s) for stray gases from production, injection, and observation wells is an ongoing challenge in the oil/gas industry.

Simulation of the foamy oil flow during the solution gas drive production of heavy oils

Foamy oil behavior is a unique phenomenon associated with cold production of heavy crude oils. It is believed that the foaming mechanism has a significant impact on the abnormally high production rate of viscous crude oils observed in many heavy oil producing reservoirs through solution gas drive.
Due to the non-equilibrium nature of the foamy oil flow, the mathematical modeling of this process involves few challenges. The main non-equilibrium process exist between solution gas and free gas that leads to a significant supersaturation of dissolved gas in the oil phase.