Interfacial Engineering of High Energy Density and Safe Solid-State Li Metal Batteries for Electric Vehicle Applications

Lithium-ion batteries (LIBs) have become a key player in the growing need for electric vehicles (EVs). State-of-the-art LIBs, using liquid electrolytes, still have significant challenges in their safety, lifespan, and energy density. Accordingly, solid-state lithium metal batteries (SSLBs) have recently been attracting increasing research and industrial attention due to their ability to overcome intrinsic disadvantages of flammable liquid electrolytes used in current LIBs.

Advanced Hybrid Solid-State Lithium(-ion) Batteries for Electric Vehicle Applications

As the dominating power supplies for current electric vehicles (EVs), the state-of-the-art LIBs are yet sulfuring from severe challenges in terms of safety, lifespan, and energy density due to the adoption of liquid electrolytes (LEs). Accordingly, developing next generation solid-state lithium(-ion) batteries (SSLBs) is considered to be a feasible approach to achieve safe and high energy density power supplies for future EVs with long driving distance and short charging time.

High Performance of Sulfide-based Electrolytes in All Solid-State Batteries for Safe Applications of Electric Vehicles

Lithium-ion batteries (LIBs) have become a key player in the growing need for electric vehicles (EVs). State-of-the-art LIBs, using liquid electrolytes, still have significant challenges in their safety, lifespan, and energy density. Accordingly, solid-state lithium-ion batteries (SSLBs) have recently been attracting increasing research and industrial attention due to their ability to overcome intrinsic disadvantages of flammable liquid electrolytes used in current LIBs. The objective of this proposed research is to develop safe and high-performance SSLBs with sulfide-based electrolytes.

Advanced Anode Materials for Next-Generation All-Solid-State Lithium Batteries

Advanced batteries are critical for achieving high-performance electric vehicles (EVs) and supporting goals to reduce greenhouse gas emissions. The prevailing rechargeable Lithium-ion batteries (LIBs) using liquid electrolytes, are the major choice for current EVs. However, these LIBs still suffer from safety, lifespan, and energy density issues.