Speeding up Federated Learning Convergence using Transfer Learning

The recent advances in machine learning based on deep neural networks, coupled with the availability of phenomenal storage capacity, are transforming the industrial landscape. However, these novel machine learning approaches are known to be data hungry, as they need to tune a huge number of parameters in order to perform well. As more and more AI based applications are being deployed to learn from personal data, privacy concerns are rising, and more specifically on sensible domains like medicine, finance or mobile related data.

Patient Privacy Preservation through Federation or Encryption? A Comparative review and prototypes

The recent advances in machine learning based on deep neural networks, coupled with the availability of phenomenal storage capacity, are transforming the industrial landscape. However, these novel machine learning approaches are known to be data hungry, as they need to tune a huge number of parameters in order to perform well. As more and more AI based applications are being deployed to learn from personal data, privacy concerns are rising, and more specifically on sensible domains like medicine, finance or mobile related data.

Classification of radiological observation through image-sentence association

Imagia is an AI-driven personalized healthcare company, enabling collaborative development of predictive biomarkers. Its Evidens platform unites deep learning expertise and clinical insights on federated patient data from partnered hospitals & AI research institutions. Imagia delivers impactful solutions to healthcare providers, pharmaceutical companies and medical device manufacturers.

Longitudinal Weak Labeling for Lung Cancer Prognosis and Treatment Response Prediction

This project aims at evaluating whether recent results in deep learning models, trained to exploit weak labels (Hwang, 2016) can serve to extract meaningful lesion localizations from image-level labels, either from individual scans or given a (longitudinal) sequence thereof. To this end, we will scale up existing models that have been shown to work on 2D images to a 3D context, studying labeling performance as the dataset size grows.

Longitudinal Weak Labeling for Lung Cancer Prognosis and Treatment Response Prediction

This project aims at evaluating whether recent results in deep learning models, trained to exploit weak labels (Hwang, 2016) can serve to extract meaningful lesion localizations from image-level labels, either from individual scans or given a (longitudinal) sequence thereof. To this end, we will scale up existing models that have been shown to work on 2D images to a 3D context, studying labeling performance as the dataset size grows.