On-Chip True Time Delay Optical Beamforming for RF Phased Arrays

Our space-based radio-frequency communication is suffering from the use of simple phase shifters. Its bandwidth capability is limited, ultimately reducing the satellite’s capacity and the system’s service availability. Most electronic beamforming implementations are bulky, frequency dependent and they consume a significant amount of power. To replace those electronic components, structures which guide light on microchips have been suggested and demonstrated to work similarly to how light inside of fiber-optic cables now all brings TV and internet to our homes.

Topology and handover management scheme for satellite networks toenable seamless terrestrial and satellite networks integration

In the near future, a large quantity of satellites will be used to provide Internet and communication services everywhere on Earth. Most of these satellites will be moving at very high speeds on orbits close to Earth which implies the satellites will be moving relative to a user on the ground. As a result, the links between the ground and the satellite will experience frequent disconnections; a user will be disconnected from a satellite rapidly moving out of sight and the connection will be re-established with another satellite coming into view.