Direct Solution Processing of Fullerene C60 with Branched Polyethylene Towards Improved Organic Electronics - Year Two

Organic solar cells are promising sources of renewable energy, with the added benefit of mechanical flexibility making them particularly desirable for many applications compared to traditional silicon solar cells. However, high cost and low efficiency has thus far hindered the commercialization of organic devices, restricting their development to academic research labs.

Synthesis and modeling of stimuli-responsive polymers for fracturing fluids use - Year two

Currently, the global warming alerts, oil prices fluctuations and clean energy have paved the way of investing in the producing wells by enhancing the recovery of hydrocarbons compared to exploration wells. Applying hydraulic fracturing from injected fluids is most common method used. These fluids create cracks in the bedrock and push the hydrocarbons to the surface. The well usually have harsh conditions of high temperatures up to 200 °C and a variant pH between 3-11 which cause challenges to the injected fluids.

Direct Solution Processing of Fullerene C60 with Branched Polyethylene Towards Improved Organic Electronics

Organic solar cells are promising sources of renewable energy, with the added benefit of mechanical flexibility making them particularly desirable for many applications compared to traditional silicon solar cells. However, high cost and low efficiency has thus far hindered the commercialization of organic devices, restricting their development to academic research labs.

Synthesis and modeling of stimuli-responsive polymers for fracturing fluids use

Currently, the global warming alerts, oil prices fluctuations and clean energy have paved the way of investing in the producing wells by enhancing the recovery of hydrocarbons compared to exploration wells. Applying hydraulic fracturing from injected fluids is most common method used. These fluids create cracks in the bedrock and push the hydrocarbons to the surface. The well usually have harsh conditions of high temperatures up to 200 °C and a variant pH between 3-11 which cause challenges to the injected fluids.

Molecular Characteristics of Cellulose and Cellulose Derivatives - Year two

Cellulose is a commercially important biopolymer. Due to its abundance, biocompatibility and renewability it has shown important commercial applications in food, pharmaceuticals, biomedical. Depending on the origin and the processing methods used, the resulting fiber dimensions, structure, crystallinity and molecular weight (MW) can vary over a broad range. MW is one of the most important parameters in polymer characterization as many of its properties depend on it. Gel permeation chromatography (GPC) has been the technique of choice for determining these properties.

Molecular Characteristics of Cellulose and Cellulose Derivatives

Cellulose is a commercially important biopolymer. Due to its abundance, biocompatibility and renewability it has shown important commercial applications in food, pharmaceuticals, biomedical. Depending on the origin and the processing methods used, the resulting fiber dimensions, structure, crystallinity and molecular weight (MW) can vary over a broad range. MW is one of the most important parameters in polymer characterization as many of its properties depend on it. Gel permeation chromatography (GPC) has been the technique of choice for determining these properties.

Design and Synthesis of Stimuli Responsive Viscosifying Agents for use in Fracturing Fluids

Fluids used in hydraulic fracturing are designed to open fractures and transport proppant along the fracture to ensure conservation of the fracture. Scientists in the industry use commercially available polymers that are produced at low-cost in high volumes for other industries (e.g. water treatment) without really understanding the reasons why these polymers have the desired performance for fracking. The fluids we are focused on developing are used to reduce the cost of pumping/fracking to make drilling operations economically viable.

Detection and characterization of biodegradable polymeric biomaterials

Biodegradable polymeric biomaterials have been used extensively for medical applications such as implants, drug/gene delivery, and scaffolds. To determine the end applications, the molecular characteristics of these polymeric biomaterials are important which must be characterized. The development of reliable and fast analytical tool to detect, separate and characterize polymeric biomaterials in medical devices and drug formulations is still challenging.