Infrastructure Sensor-based Automated Driving: Development and Demonstration

In this proposal, we intend to answer how infrastructure sensors can be used for autonomous driving. Using infrastructure sensors make automated driving safer, more simplified, and cost effective especially for multiple autonomous vehicles operating in known environments such as large residential/commercial complexes and resorts. Infrastructure sensors replace the main onboard vehicle perception sensors with infrastructure sensors mounted on the side of the road, for example on light posts.

Data Driven Intrusion Detection in Autonomous/Connected Vehicles

Securing autonomous vehicle environments has recently become a hot topic for both industry and academia due to the significant safety and monetary costs associated with security breaches of such environments. This requires different approaches to address the challenges and propose potential solutions at multiple levels of these environments. To that end, machine learning (ML) and blockchain (BC) techniques can play a vital role in ensuring that the safety and security standards are satisfied to protect vehicles from failures that may cause an accident and/or possible attacks.

Design of an EV Charging Infrastructure: DC Grid for High Density Plug-in Electric Vehicle Charging and other DC Loads-Phase II

West 5 community in London, Ontario, will pursue high penetration of electric vehicles, and is exploring an innovative marketing program of including them with the sale of each new condominium unit. The primary objective of this project is to determine an economical approach to create an acceptable infrastructure for these electric vehicles that will be desired by the community. The study will evaluate how to improve the efficiency of using Solar Energy to charge vehicles? battery and for other DC loads in the London West 5 community.

Design of an EV Charging Infrastructure: DC Grid for High Density Plug-in Electric Vehicle Charging and other DC Loads

West 5 community in London, Ontario, will pursue high penetration of electric vehicles, and is exploring an innovative marketing program of including them with the sale of each new condominium unit. The primary objective of this project is to determine an economical approach to create an acceptable infrastructure for these electric vehicles that will be desired by the community. The study will evaluate how to improve the efficiency of using Solar Energy to charge vehicles’ battery and for other DC loads in the London West 5 community.

Configuration Design, Modeling, and Simulation of the Smart Hybrid DC-AC Microgrid

The smart hybrid DC-AC microgrid is an emerging technology with remarkable potential benefits such as (i) facilitating integration of distributed energy resources and renewables, (ii) improving reliability and quality of the electrical energy supplied to the consumers, (iii) increasing the efficiency of power generation, transmission, and distribution systems, and (iv) facilitating implementation of Electric Vehicle (EV) charging infrastructure.

Development of Integrated Energy and Organic Waste Treatment Model for Rooftop Solar Greenhouse and Grocery Store in a Smart Community

S2E Technologies is a consulting company leading the design and implementation of two Smart communities, to be located in London and Guelph, Ontario. The aim of this research collaboration is to assist S2E with the modeling, design, and analysis of rooftop solar greenhouses integrated with grocery stores, anaerobic digesters and livestock barns. The analysis will consider advanced energy design measures capable of reducing energy demand and generating renewable energy on-site, such as from solar and biomass resources.

Optimization methodologies for Net-Zero Energy Communities

The future of energy supply in Ontario is uncertain. We are faced with an aging nuclear fleet and pressure to avoid future energy generation near communities. Building demands are a strain on energy supplies. A solution is to reduce building energy needs while providing sufficient distributed energy generation on a community-scale. A net-zero energy (NZE) community creates as much energy as it requires. The impetus behind this research is a community under development in London, ON, which aims to achieve NZE.

The Role of Public Participation in Identifying Stakeholder Synergies in Renewable Energy Project Development: the Case Study of Ontario, Canada

Over the past several decades, the scope of decision-making in the public domain has changed from a focus on unilateral regulatory verdicts to a more comprehensive process that engages all stakeholders. Consequently, there has been a distinct increase in public participation in the environmental decision-making process. While the potential benefits of public engagement are substantial in terms of identifying synergies between public and industry stakeholders that encourage project development, this participation does not come without its challenges.

Personal Transportation Vehicle for use in Local Neighborhoods

The main objective of this project is to provide the growing elderly population with a means of transportation, which will allow them to get around the community to perform their daily activities. This project will focus on designing a personal transport vehicle that will be safe, easy to drive, and user friendly. This vehicle will be designed in a manner so that it can provide transportation to anyone in the society. Existence of such a vehicle will decrease the need for public transit improvements, and provide people with a sustainable mean of transportation.

Modular aqua-farming system for growing fish

The proposal of the project Structure of Zero GHG Footprint Sustainable Community will benefit the community. The creation of the module design system using aquaponics methods, exploring the design of cooling system and thermal system will integrate the full process of producing sustainable food with zero pollution to the environment. As a researcher in this project, it would be a learning experience.

Pages