Analysis of proteome dynamics in single cell reprogramming proceeds

The ability to revert human cells back into a stem cell state, and then reprogram them into new cell fates has unlocked promise for future regenerative therapies. However, we still do not fully understand this reprogramming process and the interaction of proteins that make this happen. Mass spectrometry (or MS; a common technique to study molecules using a mass-to-charge ratio) may allow us to identify these unknowns but would require the collection of a large number of cells undergoing identical stages of reprogramming – a feat that is not experimentally practical or feasible.

Development of new methods for screening bioilogics by means of Capillary Electrophoresis (CE) coupled with Mass-Spectrometer (MS) via novel Open Port Probe Sampling Interface (OPP) - Year two

The methods for screening complex biological samples found wide application in pharmaceutics, forensic science and medical science. The majority of these methods involve several analytical techniques coupled together in order to maximize the efficiency of the analysis. For example, the combination of Capillary Electrophoresis (CE) with Mass Spectrometry (MS) creates a new analytical platform (CE-MS) that utilizes the separation power of CE and superior detection abilities of MS.

Development of new methods for screening bioilogics by means of Capillary Electrophoresis (CE) coupled with Mass-Spectrometer (MS) via novel Open Port Probe Sampling Interface (OPP)

The methods for screening complex biological samples found wide application in pharmaceutics, forensic science and medical science. The majority of these methods involve several analytical techniques coupled together in order to maximize the efficiency of the analysis. For example, the combination of Capillary Electrophoresis (CE) with Mass Spectrometry (MS) creates a new analytical platform (CE-MS) that utilizes the separation power of CE and superior detection abilities of MS.

UVPD of DMS-MS-selected SARS-CoV-2 peptides

Differential mobility spectrometry (DMS) is a technique that is used for the analysis of chemicals by separating complex gaseous mixtures under the influence of an electric field. It is a widely used technique and is successfully deployed in many areas, including drug and explosives testing at airports. In analytical laboratories, it can be used to separate peptides – the components that make up proteins and viruses. However, analysis of data from these experiments can be ambiguous and difficult to interpret.

Advanced differential mobility mass spectrometry with electron capture dissociation for the characterization of therapeutic proteins - Year two

Many new pharmaceuticals are based on large biomolecules like proteins. Even small differences in the protein structure can cause significant changes in the efficacy and safety of these drugs. Furthermore, these large molecules are difficult to characterize without advanced instrumentation and methods. Current technologies still struggle with robustness and reproducibility. This study aims to introduce new technology to improve the reliability of protein pharmaceutical characterization.