Material Point Method Modeling of Soil Liquefaction in Cyclic Loading

Large deformation problems represent a new issue in the current Canadian engineering practice since the current numerical methods cannot adequately address these problems. Material point method (MPM) is a modern numerical technique with many potentials for applications in large deformation problems in geotechnical engineering. The main benefit of addressing large deformation problems is the estimation of risk since as an example this methodology provides the opportunity to know the run-out distance in dam failures.

Implementation of MR/VR holographic rock mass mapping techniques in underground and surface mining.

Considerable advances in geological and rock engineering mapping methods using both conventional and remote sensing techniques have occurred over the last decade. The primary objective of the proposed research is to further develop the use Virtual and Mixed Reality (VR/MR), techniques in improving structural geological and rock mass field data acquisition. New uses of MR and Virtual Reality, VR, methods will be explored in combined field and office settings.

Development of innovative rock mass mapping techniques in underground mining

Considerable advances in geological and rock engineering mapping methods using both conventional and remote sensing techniques have occurred over the last decade. The primary objective of the proposed research is to develop the use Virtual and Mixed Reality (VR/MR), techniques in improving structural geological and rock mass field data acquisition. New uses of MR and Virtual Reality, VR, methods will be explored in combined field and office settings.

Dynamic analysis of tailings dams using advanced constitutive models

Tailings are the residual material produced during the extraction of minerals from mined ores and are usually produced in slurry form. Tailings are retained in impoundments that depending on the type of their structures could be vulnerable in terms of stability under different loading scenarios such as earthquake loading. The consequences of the failure of tailings dams are heavy economic losses, environmental degradation and, in many cases, human loss. These factors justify investment and detailed study on proper analysis and design of tailings dams.