Improving the collection performance and reducing the complexity of cyclone systems using a rotary classifier in a dynamic cyclone particle separator

Global pollution emissions contribute to climate change and are damaging to health. In many industrial applications that produce particulate matter, devices such as cyclones are used to separate and capture the particles from the exhaust gas. However, these do not capture the very small, but hazardous, particles and so expensive and energy-intensive secondary systems have to be added to the process. The industrial partner is developing a novel dynamic cyclone separator that has rotating vanes which improve the particle separation efficiency and allow capture of the fine particles. This project will develop a computer model of the flow and particle motions in the cyclone that can then be used to design these dynamic cyclones for different industrial applications and operating conditions, thus leading to a more efficient reduction of particulate pollution.

Mark Parker
Faculty Supervisor: 
Eric Savory;Anthony G Straatman
Partner University: