3-Dimensional Construction Printing: Materials and Robotics

This project is intended to development the technologies needed for three-dimensional (3D) printing of concrete constructions. This highly interdisciplinary research endeavor will draw on expertise in additive manufacturing, construction, materials science, and robotics to develop the key elements of 3D construction printing.

Modeling of Pressurized Chemical Looping Combustion in a Novel Toroidal Fluidized Bed

This study aims to produce a feasibility report on establishing a district energy system in Toronto, Ontario. The district energy system will be powered by wood chips sourced by a local, privately held forest and transported by rail to the proposed combined heat and power facility. Areas that will be examined in this study include transportation costs and logistics as well as carbon emissions throughout the supply chain. We hope that the outcome of this study will help create a path to revitalize Ontario's forest industry.

Visual Inspection UAV in Harsh Environments and Confined Spaces

Preforming regular visual inspections is essential in up keeping structures. These inspections are used to identify defects at an early stage before they pose a major threat. Unfortunately, these inspections require scaffolding or hiring a boom to access certain areas. Other areas are tight and put the worker at risk. The use of visual inspection drones, specifically tailored for confined space, provide an excellent tool to perform these inspections. Throughout this research project we will be testing and analyzing how these drones perform/withstand different harsh environments.

Simeio: Anomaly Detection for Building Automation System

Buildings are an important energy consumer and are equipped with hundreds of sensors and control systems. The analysis of such massive data can reveal insights for building owners to optimize the building infrastructure. Currently, usage of such data is limited to traditional control systems, energy commissioning, and maintenance on a regular basis.

Smart Work Zone Management

Construction zones are one of the leading contributors to Toronto’s ever-growing congestion. The aim of this study is to develop an integrated construction zone traffic management framework to minimize disruption of the traffic and reduce the effect in terms of congestion. This study leverages historical and real data collected from on-board construction trucks provided by the partner organization to find an insight as to how far upstream and downstream of the work zone congestion propagates.

A Framework to Assess the Seismic Resilience of Hospital Infrastructure in Metro Vancouver

Healthcare infrastructure plays a key role in the recovery of communities in a post-disaster scenario. In seismically active regions, such as western Canada, an understanding of the seismic performance of hospitals is essential to inform emergency management and effectively mitigate earthquake risk. This research project aims to develop new methodological approaches to integrate seismic risk assessments into the decision-making process of healthcare facilities management.

Data-driven modeling and uncertainty quantification in infrastructure science and engineering

Few centuries ago, building palaces and castles were based on past experiences and observations, hence, resulted in very inefficient designs with wall sometimes as thick as 1~2m. Today, computer modeling provides a low-cost way of predicating what may happen when engineering structures are subjected to different loads and conditions. We know that some loads are such as weight of the structure, however, others like wind can have a probabilistic nature.

Determination of Structural Behavior of UHPC Decked-I-Beam

This Mitacs project will develop and determine the structural performance of a novel bridge construction method using precast girders and precast deck slabs made of ultra high-strength and durable concrete. Full-scale tests and computer simulations will be conducted to accomplish the goal of this project. The test data obtained from this study will be analysed to determine the performance and suitability of this beam girder for its use in large-span vehicular road bridges.

Connections Design in New Double Wythe Insulated Wall Panel Containing Ultra-High Performance Concrete (UHPC)

Ultra-high-performance concrete (UHPC) double wythe panels are commonly used in building envelopes, however, the connections between panels have not been investigated properly. Several design connections will be designed and tested in association with the industrial partner to determine the feasibility of the designs. The project will investigate the structural behaviour and strength of different connections through experimental means.

Optimized Design of Building-Integrated Photovoltaic Sunshades

The proposed project involves the creation of a computational framework to optimize the design of building integrated photovoltaic sunshades. Such shades would allow improved lighting conditions within the indoor environment, while generating power through the photovoltaic panels.

Pages