Exergoeconomic Optimization of Advanced Compressed Air Energy Storage Technology (A-CAES)

Development of energy storage has been identified as one of the most important features of our rapidly evolving energy grids. While the significance of flexibility it provides is well understood, commercialization remains non-trivial. Advanced Compressed Air Energy Storage (A-CAES) is founded on well-known scientific principles that have been combined and applied in a novel way. These innovative systems are complex, each component with its own opportunity for optimization.

Optimization of Wastewater Treatment anaerobic digestion processes.

This project will test a variety of operating conditions used in anaerobic digestion (AD) in wastewater treatment (WWT) plants. The purpose is to identify optimal conditions for AD treatment process. Optimization of AD process would increase production of biogas for production of renewable energy, increase yield of bio-products for agriculture use, reduce WWT plant operating costs, and would decrease carbon footprint of municipal WWT plants. This study will use SENTRY-AD™ technology to monitor microbial activity under various treatment conditions.

Perovskite Solar Cell Development

The concern regarding the environmental impacts of climate change due to the consumption of fossil-fuels for our daily energy needs has notably increased over the past decade, resulting in a rapid increase of renewable energy implementation. The solar energy industry in particular has seen exponential increases in production worldwide.

ATCO Home of the Future and DSO Orchestration

The intern will be part of the ATCO Electricity Innovation Team and will support in delivering novel next generation prototypes that will define the future of the electricity grid in Alberta, broader Canada and globally. Some of the current projects in the portfolio includes smart EV charging, artificial intelligence based microgrids, home of the future and power systems technologies for making the electricity grid autonomous and smart. The student will be part of a horizontal team structure and will report directly to the Innovation Director.

Quality and degradation assessments of polymer-lined thrust bearings by indentation and tribological testing

Current needs for renewable and emission-free technologies imposes hydroelectric power plants to generate power in a predictable and reliable fashion. Replacing metallic to polymeric coatings in thrust bearings allows hydroelectric turbines to operate at a wider range of operation parameters. However, the sensibility of polymeric materials to the manufacturing method imposes important uncertainties on the performance and longevity these materials can have in service conditions.

MEPOWSS Wastestream Analysis

This project involves the characterization and assessment of a settling and evaporative pond system used to treat wastewater generated by the Melville Potable Water Supply System (MEPOWSS). The plant is currently being upgraded with a change in treatment processes and increased capacity that will impact the ability of the pond system to treat the new wastewater stream. The pond system consists of five pond cells in series, and current influent includes backwash from a greensand-filter and electrodialysis reversal (EDR) waste streams.

Techno-Economic Feasibility of Wastewater Heat Recovery for Cold Climates like Canada

Wastewater is an abundant and severely underutilized energy source in North America. Sewers experience predictable flow profiles and nearly constant temperatures between 18 ?C and 20 ?C year-round. When wastewater is used in conjunction with heat pumps, it can serve as an energy source and sink to provide both heating and cooling to buildings. Therefore, there exists the potential to extract significant amounts of thermal energy from the wastewater using heat exchangers, resulting in substantial economic and environmental benefits.

Measurement-based Distribution System Models for Distributed Energy Resources Control

The integration of significant capacities of distributed energy resources (DERs) such as renewable wind and solar generation for a more sustainable energy future creates several challenges to the reliable and efficient operation of power distribution systems. These include: (i) Uncertain and intermittent nature of renewable generation compromises power quality for end-customers.  (ii) Up-to-date distribution system network topologies are not well known and their real-time monitoring is limited. As a result, effective management of DERs is challenging.

Sensitivity Analysis of Gas and Particulate Matter Emissions from Future Power Generation in the Province of Alberta

The Province of Alberta (AB) has decided to phase out coal power generation by 2030 and increase renewable electricity production to 30% of total power generation, also by 2030 with the remaining 70% of the power generation being dependent on natural gas. It has been conjectured that part of generation portfolio could be diversified to include nuclear power generation.

Satellite Solar Radiation Nowcasting

The main duty of Hydro-Québec is to repond efficiently to the energy demand of customers, in a safe and secure way while remaining competitive in the markets as well. The main goal of this start-up project is to support Hydro-Québec in developing a future-oriented energy system by proposing innovative technical solutions. Among these solutions, deep learning has been the final choice. Using a deep learning approach, satellite images, weather model outputs and data from solar radiation measurement stations, will be use for the development of a solar radiation nowcasting model.

Pages