Robust Aerodynamic Shape Optimization of Automotive Vehicles

The post-doctoral fellow will first develop novel approaches for the unsteady flow design environment. The use of real-world automotive geometries will allow the post-doctoral fellow to gain valuable insights of the challenges in this field, a firmer grasp of the transient flow over automotive vehicles in real-world flow conditions and the use of commercial-industrial level numerical tools. In addition, the post-doctoral fellow will work closely with professional engineers from FCA and understand the intricacies and challenges associated with automotive vehicles.

Longitudinal effects of aripiprazole on enhancing memory and brain connectivity in first-episode psychosis

Schizophrenia is a debilitating psychiatric disorder characterized by positive (hallucinations, delusions), negative (lack of motivation, flat affect), and cognitive (impaired memory and attention) symptoms. Aripiprazole, a dual-action antipsychotic, shows promise in enhancing brain structure and memory in schizophrenia, which may have downstream positive effects on negative symptoms and outcome. However, the mechanisms and timing underlying these potential effects have yet to be determined.

Development of an assessment tool for individualization of a smoking cessation protocol using a smart pulmonary inhaler and a mobile self-care application

English //
Despite significant efforts in the area of prevention and treatment, tobacco and e-cigarette addictions remain a recognized public health problem in Canada. Artificial intelligence (AI) in health offers an innovative avenue in tobacco treatment: the combination of an intelligent pulmonary inhaler coupled with a mobile health app would offer a real-time nicotine cessation and self-care personalized protocol aimed at helping the user quit smoking or, at least, reduce the harms associated with tobacco consumption.

Developing an interfacing platform technology for silicon-micromachined JFET biosensors

Biosensors are can detect a variety of molecules in a rapid and highly sensitive manner. A new biosensing technology was developed to allow scientists to customize the biomolecular target they wanted to detect, called an open-gated silicon junction field effect transistor (JFET). However, this technology lacks user friendly packaging needed accommodate its use in diverse research settings. This can discourage people from using and building new sensing platforms.

Data-Driven Control of an Ultracompact Industrial Robot

In recent years, automation has become more accessible to small- and medium-sized businesses, leading to an increase in popularity of ultra-compact and easy-to-integrate industrial robot arms like Mecademic’s Meca500. However, because of their size constraints, it is harder for these robots to accurately follow a programmed path. This research project aims to improve the path-tracking performance of Mecademic’s Meca500 robot by fusing state-of-the-art machine learning techniques with modern control design techniques.

Implementation of Photonic Computing Chip (IPCC)

The IPCC project aims to utilize the advancements in lasers, optics and semiconductor fabrication facilities to deliver a computing chip that uses laser instead on electrical signals to perform computations. The new paradigm of computation execution allows computations to be performed much faster at lower energy consumption which directly leads to lower costs for computations. The advantage is particularly huge for AI computations. The Interns will perform research work to design, fabricate and test the new chip and develop software that allow using this chip efficiently.

Simultaneous localization and mapping using a magnetic quantum sensor

Vehicles that are able to autonomously move in the air, on the ground, or underwater must fuse various forms of sensor data together in order to ascertain the vehicles location relative to objects or a map. Typical sensor data includes inertial measurement unit data and some sort of positioning data, such as GPS data. However, positioning data is not always available, especially indoors and underground. SBQuantum (SBQ) has developed a novel quantum magnetometer that can measure the Earth’s magnetic field gradient.

High-heat-flux microprocessor cooling using microgaps

Just as every computer needs a processor, every processor needs a cooling system. Without one, the significant heat generated by the processor will overheat the system. As time has advanced, this heating issue has only become more critical, thus necessitating the advent of more effective cooling solutions. Microgaps, which pass coolant through, as the name suggests, a microscale gap, are uniquely suited to meet the ever-increasing cooling demands of modern processors. Moreover, they are capable of doing so in a compact and reliable manner.

Reliability Analysis for Bridges Under Autonomous Truck Platooning Loads

The freight trucking industry is in a transformational phase by adopting smart mobility options to reduce operational costs and minimize carbon foot print. The autonomous truck platooning is a major step in this regard and the goal of this research project is to assess the readiness of the bridges for the peculiar loading conditions due this new form of the mobility by performing reliability analysis. The partner organization will benefit from the outcomes of this research by keeping its leading role in the smart mobility segment of the industry.

Improving Aveer RFID technology for real-world scenarios

Radio Frequency Identification (RFID) technology has received extensive interests due to its low cost, battery-free, and small size. Many exciting applications based on RFID have been developed in recent years, such as localization, gesture sensing, and health monitoring, etc. However, none of these systems are widely in real-world use. The reason is that most existing systems assume a static communication environment, while a small environmental variation or tag geometrical condition change will cause a large accuracy decrease.