Briser l’isolement des ainés en temps de COVID-19 grâce au système d’échange local mis en place par l’Accorderie de Sherbrooke

L’urgence sanitaire liée à la COVID-19 a forcé les ainés à adopter des mesures drastiques de confinement qui les mettent à risque d’un isolement. À long terme, ce confinement peut conduire à un désintérêt de la vie. L’organisme communautaire l’Accorderie de Sherbrooke, qui propose un système d’échange local entre ses membres, a mis sur pied dès le début du confinement un programme de jumelage entre un membre et un ainé pour les livraisons à domicile, générant 120 nouveaux membres.

Discovery of Root Causes of Quality Deviations in Electronics Manufacturing

A typical production line in electronics generates an important quantity of data which is generally ignored and unused. Tack Verification increases efficiency of electronics manufacturing companies by collecting and transforming operational data into actionable insights and key performance indicators.
The project consists of the research and primary validation of artificial intelligence models allowing discovery of the root causes of quality deviations measured during electronics manufacturing.

COVID-19 : module pharmaceutique pour le développement accéléré de produits désinfectants

Galenit est une plateforme de formulation qui facilite le développement de produits de santé. Dans le cadre de ce projet, Galenit souhaite développer sa plateforme afin d’y intégrer l’aide à la formulation de produits désinfectants.

Decentralized Deep Radiomics: Scaling up the discovery of prognostic and predictive cancer imaging biomarkers from routine clinical data across a network of hospitals

Genetic advances over the past 10 years have led to the development of several targeted therapies for lung, breast and colon cancer. However, there are a number of factors that limit the optimal use of these innovations, including the high cost of the organizational process associated with molecular testing, and their late use in the patient's journey. Recently, the prospect of obtaining non-invasive, cost-effective and timely triggers for diagnostic & therapy has emerged from a discipline known as Radiomics.

Transforming the reality of COVID-19 pandemic into photorealistic virtual reality for immersive training of health-care professionals

In the context of pandemics like COVID-19, the value of multidisciplinary skills for health-care professionals becomes more evident. Training these professionals to take on new roles and responsibilities can be time-consuming, costly, resource-demanding, and most importantly, risky. Photorealistic transformation of training environments into virtual reality (VR) can be performed using the advanced techniques of computer vision, photogrammetry, and computer graphics.

Advancing traceability in informal supply chains through applied AI and ML

PemPem develops tools to ensure product traceability in informal supply chains using AI. These informal supply chains employ over 60% of the working population worldwide. They typically have highly inefficient operations due to very limited access to information and a reliance on opaque word-of-mouth coordination. While PemPem has started solving the problem of collecting data on commercial transactions and activity in these informal supply chains and of improving their efficiency, it now has to convert this data into actionable traceability insights.

Koala Pro – Dossier intelligent

Conception et développement de 3 plateformes intégrées pour commercialisation dans l’intérêt d’augmenter la productivité des nutritionnistes au travers d’une prise de données accélérée, une analyse de données améliorant la précision de la note au dossier, une aide au diagnostic alimentaire pour améliorer l’intervention client-patient, et la création de statistiques professionnelles liées aux résultats des interventions.
Le développement d’une première plateforme mobile permet la récolte de donnés patient-client hors consultation, une deuxième plateforme de note au dossier permet l'agrégation d

Contextual portrait detection

A frequently occurring problem in face verification in Jumio is that stock face detectors find multiple faces in the input image. The decision which one should be selected for the face verification step is not clear. Common reasons being, users submitting a single image with both selfie and document id. There can be other people, paintings, posters or television screens in the background.
Users may upload the selfie and the document picture in reverse order, etc.

Leveraging Deep Learning in Asset Pricing in a Multi-Factor Modelling Framework

Providing relevant quantitative trading strategies requires obtaining financial data from multiple sources to obtain market information and then use this data to model outcome. One difficulty in this process is that data entry is done by financial analysts who spend a large portion of their activities entering data from PDF to an application. This project seek to improve data collection in Canada by automating the process and focus analysts on their core competencies.

Deep learning approaches for semantic textual similarity on low-resource languages and specialized domains

The aim of this research is to investigate from traditional methods to deep learning methods, how to measure the meaning relationship between two sentences, by combining the local context, at word-level, and the global context at the sentence-level, and their ability to model informativeness and diversity of meanings expressed in natural language, i.e. in English or in French.
Moreover, as we are interested in Information Extraction of entities, concepts, triplet and semantic relation in unstructured text, we will adapt the BERT model for low resource domains and languages.