Investigation of a fully biocompatible bio-electrolytic supercapacitor system

The concept of incorporating bio-product based electrolytes in the design of supercapacitors is recent and novel. To use a bio-molecule to harvest and harness energy is one of the most breakthrough technologies of our current age. The thrust towards wearable technologies and Internet of Things (IOT) applications have created an emerging market for environmentally friendly flexible energy storage device.

Measurement of the physical and thermo-physical properties of molten salts and their interactions with materials of construction

Small Modular Reactors (SMRs) represent the next generation in nuclear power reactor technology with the benefits of being non-greenhouse-gas emitting forms of power production and providing inherent safety, lower construction and operating costs and proliferation resistance. As part of the recently announced New Brunswick SMR Research and Development Cluster, Moltex Energy proposes to build their first-of-a-kind Stable Salt Reactor (SSR) at the Point Lepreau site in southwestern NB.

Process Intensification approach for chemicals production from waste and biomass

This project aims to develop a sustainable approach to produce value-added products from waste and biomass. The industrial partner (Enerkem) uses municipal solid waste and other biomass to produce syngas, which is further converted to methanol or ethanol. Currently, the company seeks to enhance this capability by producing other value-added chemicals. One of the key steps in the desired technology is the production of methyl acetate.

Mathematical modelling of Reversible Solid Oxide Fuel Cells (RSOFCs) for the conversion of CO2 and H2O to syngas

SeeO2 energy and the Birss group (UCalgary) have developed world-leading catalysts for RSOFC systems with promising performance for the production of syngas and power from H2O/CO2 feeds. Today, the company is aiming to scale-up this technology and move towards commercialization by building larger cells, up to 5 x 5 cm2 (16 cm2 electrode area). However, the process of scaling-up RSOFCs presents many challenges in understanding the effects of fabrication and operation parameters on the cell performance at larger scale.

Characterization and Pelletization of Western Red Cedar Residue

The key objective of this research is to test the Refuse-Derived Fuel supplied by ICC and investigate parameters involved in making durable pellets from these residues. This will include conducting a series of pelletization tests with different mixture recipe, pre-conditioning of material as well as adding binders. The produced pellets will then be tested for their calorific value, chemical composition, chlorine content and ash content. ICC plans to convert RDF to heat, and electricity through gasification.

Building Data-Driven Permanent Real-Time Full Wellbore Flow Monitoring Using Hybrid Distributed Fibre-Optic Simultaneous Vibration and Temperature Sensing Technology

In this project, we develop a framework to use the data from fiber sensing technologies to smart monitoring of Oil and Gas Reservoirs. The project involves extensive lab experiments simulating different monitoring conditions. Different configurations for installation of sensing equipment will be examined. The optimum location of tubing will be also determined. Signal processing methods will be used to extract useful information from the raw fiber-sensed data. Through experiments, we will record and analyze the relationship of fiber-sensed signals and the flow conditions.

Implementation and Analysis of Polymeric Pressure Sensor to Estimate Blood Pressure in the Brachial Artery

Automatic blood pressure monitors with inflatable cuff currently in use are inaccurate and produce inconsistent results. Even small movements during measurement can affect the measurement and lead to inaccurate diagnosis. This project aims to improve the accuracy of blood pressure monitors using advanced thin film sensors that can greatly improve the diagnosis. The project will enable a Canadian company to develop advanced technology that can put Canada as one of the hubs of blood pressure monitoring technology that only a few countries can boast of.

Recyclable Photocatalysts for Treating Pulp & Paper Mill Wastewaters

This research project will develop recyclable nanoparticles for water treatment challenges in Canada’s pulp & paper industry. Key advantages of these recyclable nanoparticles are that they are light-activated, do not require the addition of any treatment chemicals to the water, and can be re-used and cycled continuously.

A Regular Solution Based Model for Evaluating Asphaltene Stability of Upgraded Heavy Oils

Most of the heavy oil and bitumen produced in Western Canada is transported through pipelines to refineries in North America. Prior to transportation, the high viscosity of those fluids must be reduced by either dilution with a light solvent or upgrading. The high costs associated with handling diluents has increased the interest in upgrading; that is, the thermal conversion of high viscosity heavy oil or bitumen into a less viscous product.

Development of a gas/liquid contactor for CO2 capture

High capital and operational costs together with the need of large process units remain a challenge for the widespread application of carbon capture and storage in carbon-intensive industries. Industrial Climate Solutions Inc have proposed the utilization of the Regenerative Froth Contactor (RFC) - a technology originally developed as a biological-chemical filter - as a process for carbon capture and storage. The use of a RFC could significantly improve the efficiency and robustness of the capture stage with significant size and cost reductions.