Biomass Upgrading with Natural Gas for Fuel and Renewable Chemicals

Biomass valorization with natural gas to produce high-quality fuel and sustainable chemicals (i.e. aromatics) will be investigated under mild conditions (400ºC,

Accelerate development of new technologies and applications for advanced water treatment

Global population growth, urbanization and changing climate patterns have increased the demand for potable water, wastewater reuse and value recovery from wastewater, and for remediation of industrial process water. Population growth also results in increased demand for the shipping of goods by ocean freight, with the associated risk of the transport of unwanted marine life from one location to another by the discharge of ballast water.

Accelerate development of new technologies and applications for advanced water treatment

Global population growth, urbanization and changing climate patterns have increased the demand for potable water, wastewater reuse and value recovery from wastewater, and for remediation of industrial process water. Population growth also results in increased demand for the shipping of goods by ocean freight, with the associated risk of the transport of unwanted marine life from one location to another by the discharge of ballast water.

Investigating the microscale structures and rheological properties of oil water-gellant complexes for the development of gelators in remediating surface-water oil spills

Oil spills pose both acute and chronic hazards to ecosystems and require effective and timely treatment. As large quantities of crude oils are transported across and in the proximity of oceans. rivers. and other waletways, it is especially important to be prepared for spills into water. The dynamic and variable character of aquatic environments especially highlights the need for rapid, dexterous responses.

Process Optimization of Electrokinetic Transport Phenomena for Remediation of Oil Sands Tailings

The research project would involve developing and executing an experimental program to optimize the application of electrokinetic dewatering technology for oil sands tailings called EKS-DT developed by ElectroKinetic Solutions (EKS). This research will involve conducting a series of high priority experiments for process optimization and innovation. Three main research categories involving electrokinetic tailings consolidation modelling, optimum electrode design and optimum power sequencing have been identified as crucial areas for improving the technology.

Optimizing co-digestion of industrial, commercial and institutional (IC&I) organic waste and developing an integrated nutrient recovery technique

Promoting the use of renewable energy such as biogas produced from organic waste is one the main alternatives to achieve more sustainable development strategies. Anaerobic Digestion (AD) is an efficient and proven technology, which can be employed to convert Organic Waste to Biogas as Renewable Natural Gas (RNG), and to reduce global methane emissions. The main objective of this research is to determine and optimize the input recipe of mixed feedstock organic waste for an Anaerobic Digester (AD) to take advantage of economy of scale and to have synergetic effect on biogas production.

Development of Dynamic Feature Extraction Techniques for Industrial Process Data Analysis with Application to Optimization of Steam Assisted Gravity Drainage (SAGD) Process

The Operational Excellence (OpEx) team at Spartan Controls is actively involved in several initiatives for developing advanced process control (APC) solutions to the oil sands industry. The OpEx team collaborates with Professor Biao Huang’s research group through the NSERC Industrial Research Chair (IRC) in the Control of Oil Sands Processes program for solutions that require extensive research and development.

Operating Strategy for Electromagnetic-based Thermal Recovery Method

Canada has the third largest oil reserves in the world, mostly in oil sands located in the northern Alberta, which is estimated to be 166 billion barrels. Steam Assisted Gravity Drainage (SAGD) has been the only commercially viable in-situ recovery method available to date. Application of SAGD is known to be energy intensive and has associated environmental impacts. Electromagnetic heating (EMH) has been the focus of ever-increasing theoretical and experimental studies to examine if it can be used to heat up the geomaterials in field scale.

Determination of groundwater effects of the new Foothills Regional Waste Management Center storm-water management system

A new groundwater monitoring will be conducted consistently throughout the precipitation period (May~October) to collected a seasons worth of data around the “Engineered Forest”. The newly collected data will then be compared to historical values of the FRWMF to see if there are any observable differences between the two. This will prove there is no measurable effect of the “Engineered Forest”.

An innovative process for production of syngas (H2 and CO) for biojet synthesis through hydrothermal liquefaction of biomass/organic wastes followed by supercritical water gasification

This project aims to convert feedstocks to H2-rich syngas for FT biojet fuel synthesis by using a two-stage system. The first is a hydrothermal liquefaction (HTL) process, one of the most promising thermochemical pathways to liquefy solid biomass into liquid products including bio-crude with higher heating values and an aqueous product. The second is a gasification process using water in supercritical range (SCWG) and in the presence of a catalyst, during which the liquefied biomass (after separating out char and ash), from first stage can be transformed to clean and H2-rich syngas.

Pages