Examining Human Standing Balance Response with Independent Ankle Control

Standing balance is controlled by several inputs, including vision, vestibular sense, and ankle proprioception
Research studies in this field actively engage and manipulate these input mechanisms to examine their
effects on the balance output, mainly muscle actuation in the lower limbs. While significant progress has
been made, it is often difficult to isolate a single input and test its results on the output. The unique Robot
for Interactive Sensor Engagement and Rehabilitation (RISER) has been developed in the UBC CARIS

An Electrocautery Device with an Efficient/Surgeon-Friendly Smoke-Evacuation System

Surgeons routinely use electrocautery to remove unwanted tissue, seal off and cauterize small bleeding vessels in the tissue, or create a surgical incision. Cauterizing tissue, however, creates a smoke plume that contains potential carcinogens as a result of carbonization of proteins and fat. The (soft) tissues that are treated may also contain hazardous materials, e.g., bacteria, viruses. Also, occasionally, when prosthetic materials are vaporized, there may be the development of toxic gases. Ideally, all of this smoke should be removed from the operating room.

Mathematical modeling of cancer cell movement through biological fiber networks

Cancer is classified into various stages of malignancy. The highest and most lethal stage is characterized by tumor invasion and  metastasis. There are basically two mechanisms for cancer metastasis, (i) transport of malignant cells through the blood  stream and (ii) active movement of tumor cells into healthy tissue. In this project we are interested in the second mechanism.

Coil and Sequence Development for Metabolic Magnetic Resonance Imaging

Dynamic Nuclear Polarisation makes it possible to boost the MRI signal of 13C labelled pyruvate 10,000-fold, overcoming the low natural signal of carbon. This makes imaging of metabolic processes possible, and could provide useful insight on changes in cellular metabolism due to cancer.

Research and Development of Automated Pluripotent Stem Cell Propagation

Stem cells are at the forefront of modern medicine and are expected to revolutionize both the human and veterinary healthcare industries. Currently, a major obstacle to the field is the time-consuming and costly technical time spent growing and maintaining various stem cell populations. The degree of contamination with non-stem cells, ability of the stem cells to thrive and grow, and quality of the stem cells depends largely on the skill of the technician.

Development and validation of a mathematical model of brain activity during deep brain stimulation in Parkinson's disease

Deep brain stimulation (DBS) consists in implanting electrodes delivering electric stimuli in deep brain structures to relieve motor symptoms of Parkinson's disease (PD). Even if DBS is successful in alleviating symptoms for about 50,000 patients worldwide, it is an invasive neurosurgical technique, and its mechanisms of action remain elusive. This therapy could be greatly improved by targeting the cortex, also impacted by DBS. However, a pre-requisite is to understand how cortical activity is impacted by DBS.

Development of a real-time analytical tool for predicting the tissue fate in ischemic stroke

Thrombolytic therapy is the mainstay of stroke treatment. However, this treatment can be potentially harmful. A patient-specific model of expected outcome would greatly facilitate the treatment decision making process both for clinicians and patients. We propose to develop a clinical tool by incorporating the imaging and clinical dataset to predict the fate of tissue in ischemic stroke. We expect the product to enable real-time quantification of expected tissue outcomes using patient- and tissue- specific thresholds.

A Self-Balancing Omni-Delta Robot

In this project, a modified Delta parallel robot is designed in which the number of passive joints is reduced, and an active joint is added to the hardware. To the best of our knowledge, this configuration seems to be the first of its kind.

In this project, kinematic and dynamic analyses will be performed. Active compliance control and collision anticipation algorithms will also be developed for this new design. This configuration will be used as the “waist” of an omni-directional, self-balancing service robot. Methodology and novelty of approach and/or application

Pages