Mathematical modeling of cancer cell movement through biological fiber networks

Cancer is classified into various stages of malignancy. The highest and most lethal stage is characterized by tumor invasion and  metastasis. There are basically two mechanisms for cancer metastasis, (i) transport of malignant cells through the blood  stream and (ii) active movement of tumor cells into healthy tissue. In this project we are interested in the second mechanism.

MEMS based Antenna array

Evolution of communication technology is pushing the limits beyond those of conventional radio frequency and millimeter-wave devices. A key trend in this evolution is miniaturization and ultrahigh density integration of radio/microwave frequency devices. Micro-electromechanical systems (MEMS) technology provides the opportunity to develop micro-scale RF devices and satisfy the market demand.

3D Visualization of Tunnelling Construction using a Construction Synthetic Environment

Our research aims at developing highly interactive and inter-operative applications for use in complex simulation environments. Its goals are to develop a suite of modeling, simulation, and analysis tools for: (1) the planning and management of construction projects throughout their life phases from conception to operation, (2) the training of construction personnel, and (3) the exploration of construction management best practices.

Development of proxy reservoir models for geological carbon storage

The project’s aims are to conduct research on geological carbon storage from the perspective of dynamic analysis and process systems engineering, looking in particular at the dynamics between the wellhead and the CO2 storage reservoir. The main objective is to achieve closed loop operation and management of the reservoir with respect to CO2 sequestration and storage, along with enhanced oil recovery in cases where the reservoir is not fully depleted.

Comparative Study of Fixed-Rate Coded and Rateless Coded Cooperative Wireless Networks

Fixed-rate coding for cooperative wireless networks with decode-and-forward (DF) relay processing has received much attention. Yet, only a fairly narrow body of research exists on rateless coded DF relaying networks. Little is known about how the performances and complexity implications of fixed-rate and rateless coded systems compare. Meanwhile, such comparisons play a vital role in the system design for cooperative networks.

Robust detector design based on Stochastic Resonance

The stochastic resonance (SR) is a phenomenon discovered recently in some nonlinear systems where addition of a certain amount of noise can, somewhat paradoxically, enhance its performance. It has found applications in biological sensory systems [1] such as visual, auditory systems, and tactile system as well as engineering applications such as ac-driven Schmitt triggers, and bistable ring lasers. The bistable systems (BS) are nonlinear systems [4] that are widely used as SR systems.

Optimal design of experiments in geological carbon storage

The project’s aims are to conduct research on geological carbon storage from the perspective of dynamic analysis and process systems engineering, looking in particular at the dynamics between the wellhead and the CO2 storage reservoir. The main objective is to achieve closed loop operation and management of the reservoir with respect to CO2 sequestration and storage, along with enhanced oil recovery in cases where the reservoir is not fully depleted. The main thrust areas of the project are described below.

Global and Local Stress Analysis of Coke Drum by New Temperature-dependent Elastoplastic Constitutive Material Model

Coke drums are major petroleum refinery and oil sands upgrading facilities associated with the processing of oil sands bitumen. The service lives of current coke drums are limited and frequent repairing is required due to severe cyclic thermal-mechanical load experienced. The objective of this project is to find root causes causing the damage/failure through more accurate global and local elastoplastic analyses on the coke drums by using new developed material constitutive model.

Structural Health and Wear Monitoring in Large-Diameter Rubber Mining Hoses

Mining products are frequently transported as slurries, which causes considerable wear within pipes. Large rubber mining hoses were found to have excellent wear properties. However, these hoses are still subject to wear, and wear monitoring is thus required. Unfortunately, systems currently available for this purpose have shortcomings. An improved rubber hose design with wear monitoring system is thus sought to increase inspection intervals, reduce cost and improve safety. A novel approach to wear monitoring is the focus of this project.

Pages