Anticancer activities and drug-drug interaction of extracts from long pepper, rosemary, lemongrass and white tea with chemotherapeutics

Natural extracts have potential as anti-cancer therapeutics. These botanical materials are well tolerated and are safe to be given as supplements over long periods of time. This project aims to provide scientific and clinical validation of these extracts for their anticancer effects and sensitization of cancer cells to standard chemo regiments.

Computer-vision Powered Smart Production Assistant

Over 70% of tasks in manufacturing are still manual; therefore, over 75% of variation in manufacturing comes from human beings. Human errors were the major driver behind $22.1 billion in vehicle recalls in 2016. Currently, when plant operators want to gain an understanding of their manual processes, they send out their highly-paid industrial engineers to run time studies. These studies produce highly biased and inaccurate data that provides minimal value to manufacturing teams.

Full-scale testing of a liquid cooling system for electric vehicle inverters

It is critical that on-board power electronic components of electric vehicle inverters operate within optimal temperature ranges. Failure to accomplish this results in overheating, oversizing and degradation of electronic components. Moreover, reduced efficiency and motor drive performance will have significant economical impacts on global automakers. This research will further contribute to developing a new thermal management system incorporating impinging-jet-based technology with liquid cooling, for improved heat transfer capabilities; a current prototype had been tested.

Formulation and Process Optimizations for the Manufacturing of Cannabinoid Nanoemulsions

Coming into force in October 2019, amendments to the Canadian Cannabis Regulations will introduce guidelines governing the legal production and sale of cannabis-infused extracts, edibles, beverages and topicals. These new products are at the forefront of the natural health product (NHP) and consumer packaged goods (CPG) industries, but challenges associated with their formulation, production and stability are quickly mounting.

Determination of Structural Behavior of UHPC Decked-I-Beam

This Mitacs project will develop and determine the structural performance of a novel bridge construction method using precast girders and precast deck slabs made of ultra high-strength and durable concrete. Full-scale tests and computer simulations will be conducted to accomplish the goal of this project. The test data obtained from this study will be analysed to determine the performance and suitability of this beam girder for its use in large-span vehicular road bridges.

Development and Applications of Cement Composites Made of Various Forms of Basalt Fibre

The structural health and performance of existing infrastructure in Canada has a large impact on the Canadian economy and hence, it is imperative that this infrastructure is kept in good operational conditions. A significant portion of this infrastructure was built during the post world war period, which suggests much of this infrastructure has surpassed their service life. Additionally, Canada’s extreme cold weather conditions give rise to adverse loading conditions such as freeze and thaw cycles, which further leads to damage and making this infrastructure more susceptible to failure.

Development of high precision microelectromechanical systems (MEMS) based vacuum encapsulated resonators

Rapid development of micro-fabrication technology, once considered exclusively for aerospace navigation, is now regarded for a wide range of applications, including autonomous vehicle navigation, underwater and industrial applications. Microelectromechanical systems (MEMS)-based gyroscope employs a resonating mass (resonator) to detect changes in motion, which is the central element of the gyroscope. MEMS resonator energy loss is the primary barrier towards achieving navigation-grade precision, so predicting resonators’ vibration characteristics is critical for minimizing energy loss.

Masonry Construction as a Solution for Healthy and Resilient Buildings: A Life Cycle Thinking Based Evaluation

This research aims at life cycle thinking-based comparison of popular wall material (i.e., wood, concrete, masonry, etc.) for institutional, commercial, and industrial (ICI) building construction in Canada. Empirical studies will be used to observe the deterioration of interior and exterior masonry wall systems in various climatic regions. Life cycle sustainability assessment would be used to evaluate social, environmental, and economic impacts. Alternative wall construction methods will be compared using a methodological framework that integrates TBL, resiliency, and occupant health.

Identification of a constitutive material model for an aircraft engine abradable rub strip material

This research project between the University of Windsor and Pratt & Whitney Canada (P&WC) is focused on a porous composite material used by aircraft engine manufacturers in the design of fancases of turbofan engines. The objective of the project is two-fold and includes 1) experimentally investigating the behavior of the composite material at different loading conditions; and 2) identifying a model that can be used to represent this material in fan blade-off simulations.

Evaluation of Pneumatic Massage in Automotive Seating

This study aims to validate whether a new pneumatic massage system has a physical benefit to drivers. Using two seating conditions (massage and no massage), this study will examine the effects during a one-hour simulated seating task for each condition on separate days. The researchers will measure participant discomfort, low back muscle blood flow/oxygenation, heart rate, and blood pressure. Data for these measures will be collected and analyzed in order to determine if a relationship exists between seating condition and any other variable.