Determination of Structural Behavior of UHPC Decked-I-Beam

This Mitacs project will develop and determine the structural performance of a novel bridge construction method using precast girders and precast deck slabs made of ultra high-strength and durable concrete. Full-scale tests and computer simulations will be conducted to accomplish the goal of this project. The test data obtained from this study will be analysed to determine the performance and suitability of this beam girder for its use in large-span vehicular road bridges.

Development and Applications of Cement Composites Made of Various Forms of Basalt Fibre

The structural health and performance of existing infrastructure in Canada has a large impact on the Canadian economy and hence, it is imperative that this infrastructure is kept in good operational conditions. A significant portion of this infrastructure was built during the post world war period, which suggests much of this infrastructure has surpassed their service life. Additionally, Canada’s extreme cold weather conditions give rise to adverse loading conditions such as freeze and thaw cycles, which further leads to damage and making this infrastructure more susceptible to failure.

Development of high precision microelectromechanical systems (MEMS) based vacuum encapsulated resonators

Rapid development of micro-fabrication technology, once considered exclusively for aerospace navigation, is now regarded for a wide range of applications, including autonomous vehicle navigation, underwater and industrial applications. Microelectromechanical systems (MEMS)-based gyroscope employs a resonating mass (resonator) to detect changes in motion, which is the central element of the gyroscope. MEMS resonator energy loss is the primary barrier towards achieving navigation-grade precision, so predicting resonators’ vibration characteristics is critical for minimizing energy loss.

Masonry Construction as a Solution for Healthy and Resilient Buildings: A Life Cycle Thinking Based Evaluation

This research aims at life cycle thinking-based comparison of popular wall material (i.e., wood, concrete, masonry, etc.) for institutional, commercial, and industrial (ICI) building construction in Canada. Empirical studies will be used to observe the deterioration of interior and exterior masonry wall systems in various climatic regions. Life cycle sustainability assessment would be used to evaluate social, environmental, and economic impacts. Alternative wall construction methods will be compared using a methodological framework that integrates TBL, resiliency, and occupant health.

Identification of a constitutive material model for an aircraft engine abradable rub strip material

This research project between the University of Windsor and Pratt & Whitney Canada (P&WC) is focused on a porous composite material used by aircraft engine manufacturers in the design of fancases of turbofan engines. The objective of the project is two-fold and includes 1) experimentally investigating the behavior of the composite material at different loading conditions; and 2) identifying a model that can be used to represent this material in fan blade-off simulations.

Evaluation of Pneumatic Massage in Automotive Seating

This study aims to validate whether a new pneumatic massage system has a physical benefit to drivers. Using two seating conditions (massage and no massage), this study will examine the effects during a one-hour simulated seating task for each condition on separate days. The researchers will measure participant discomfort, low back muscle blood flow/oxygenation, heart rate, and blood pressure. Data for these measures will be collected and analyzed in order to determine if a relationship exists between seating condition and any other variable.

An Optimal Hybridized Design Methodology for a Solid-State Fermenter: Safe Pesticide Alternatives Using Microbes

Crop Defenders, our industrial partner grows a high-value type of fungi that can kill crop pests without harming or poisoning the crops. This type of fungus is currently being grown in a manual and labor-intensive process. The aim is to automate this manual process to drastically increase the company’s productivity. By doing so, Crop Defenders expects to lower their cost per acre 10-fold and be able to sell to field-farmers as well as greenhouses.

Applications of Blockchain for Cross-Border Deposits in the Finance and Banking Sector

Blockchain technology changed how e-payments work and opened the door for development of advanced and secure e-payment systems. Currently, cryptocurrency is the only well-known, successful application of blockchain technology. However, the application of blockchain technology is not limited to cryptocurrencies. Many distributed ledger technology experts discussed the benefits of applying blockchain in many sectors such as, finance, government, healthcare, energy, supply chain, and transportation. One important sector expected to benefit significantly from blockchain is the banking sector.

Improving the magnetic properties of electrical steels

This project is intended to help the industrial partner, Stelco, to develop electrical steels with improved magnetic properties through controlled thermomechanical processing. Electrical steels are widely used in the manufacturing of stators and rotors of electric motors used in general rotating machines and electric vehicles. Improving the magnetic properties of electrical steels would result in more efficient traction motors, and consequently extending the driving range of electric vehicles.

Virtual Model of Traction Control and Electronic Stability Control Systems

The proposed research project focuses on designing a control system, which integrates algorithms of active vehicle safety technologies, such as traction control and electronic stability control systems, and implementing it to a commercial software for full vehicle simulations. The controller model will be designed on a specialized control system software, called Simulink, to be implemented to a full vehicle model. The controller will be verified during a full vehicle simulation by observing the vehicle stability in extreme maneuvers.

Pages