All Digital, Multi-Standard Highly Efficient Transmitter for Mobile Communication BaseStation Applications

A novel transmitter architecture which presents more power efficiency than that of the transmitters being used currently in mobile communication base stations, is proposed in this research project. The result of this research fills the gap between the theoretical idea behind this transmitter structure and its practical usage in cellular network base stations. This transmitter can operate over a wide frequency range and with different mobile communication signal standards very power efficiently while maintaining the quality of the transmitted signal.

Design and Optimization of Machine-Type Communication in LTE

Machine-to-machine (M2M) user equipments (UEs), which do not require a direct human interaction for communicating to each other, are predicted to have a large end-user market in the near future with numerous potential applications, such as home automation, patient monitoring, transportation, and smart metering. Currently, machine-type communication (MTC) is in the process of being standardized for long term evolution (LTE) cellular networks in the third generation partnership program (3GPP).

The Phone Oximeter, a Simple Mobile Device to Screen for Sleep Apnea in Children

The high prevalence of obstructive sleep apnea (OSA) poses a serious threat to the healthy growth and development of many children. The lack of oxygen during sleep can lead to daytime sleepiness, growth failure, behavioural problems and developmental delay. Polysomnography (PSG), the gold standard to diagnose OSA is high in cost, requires a well-equipped sleep laboratory and overnight stay. The Phone Oximeter, is a mobile device that integrates a pulse oximeter with a cell phone. In addition to the blood oxygen saturation (SpO2), it provides a signal of changes in blood volume.

Digital Pre-Distortion for Concurrent Multiband and Multiple Antenna Transmission

The proposed project aims at the design and implementation of low complexity digital pre-distortion (DPD) algorithms for multiband and multiple input multiple output (MIMO) wireless transmitters. The power amplifier (PA) is one of the major sources of power dissipation in wireless base stations. The DPD techniques enable the PA to operate in a more efficient power level resulting in more energy efficient wireless networks.

Stochastic Control in Network Coding Enabled Wireless Systems Year One

Network stochastic control is considered as a primary goal in the design of emerging wireless networks. One of the objectives in the stochastic control of wireless networks is to enable crosslayer designs to achieve stochastically optimal resource allocation in the physical and MAC layers. Different stochastic performance criteria can be considered in the optimal control of wireless networks. Delay is one of the most challenging ones and has been addressed far less in the literature.

Development of an Electrodynamic Simulation Toolbox for Nanophotonics

Finite Difference Time Domain (FDTD) simulations allow researchers to model complex devices and systems based on integrated micro/nano structures. The electrodynamic behaviour predicted by FDTD simulations match very well with the real physical systems, which significantly accelerates the development of novel devices. However, there are limitations in existing FDTD techniques to model metal nanoparticles on sub-100 nm length- scales, which are of great interest to research and industry.

Development and characterization of catalyst electrodes for electrochemical reduction of CO2

Electrochemical reduction of carbon dioxide (ERC) is a process by which carbon dioxide (CO2) is converted into valuable chemical products via chemical reactions driven by electricity. The goal of this project is to fabricate and test catalytic metal electrodes to increase the efficiency of ERC reactors converting carbon dioxide from industrial exhaust gas streams into formic acid.

Design and Optimization of Long Term Evolution Advanced (LTE-A) and WiFi Heterogeneous Networks Year Two

In this project we intend to find an abstract understanding of heterogeneous networks (HetNets. Our main focus is the small cell networks based on LTE-A and WiFi systems. We will start by investigating simple and efficient resource management algorithms in such networks and attempt to find a simplified model for the quality of service (QoS) in such networks. This model will be interfaced with a software tool already developed at Siradel and used to clarify the expected performance of a HetNet in a given wireless environment.

"Performance Optimization in 3GPP<->WiFi Traffic Steering *Renewal, previous title ""Stochastic Control in Network Coding Enabled Wireless Systems Year One"""

The mobile traffic has been increased significantly both in volume and in the variety of services in the new generation of broadband mobile networks. This made mobile operators to think about new approaches of data forwarding in wireless cellular networks. With this motivation, mobile operators have started to deploy WiFi to enhance the cellular network capacity. This is done by providing a seamless traffic steering between WiFi and cellular network.

Image Deblurring for Mobile Devices

he goal of this project is to achieve high quality real-time motion deblurring for images captured by cameras mounted on mobile devices. First, we will propose a novel two-camera technique that exploits the trade-off between spatial and temporal resolutions in capturing the photo with the camera movement information to be used in the deblurring process. Second, we will introduce new point-spread function (PSF) estimation algorithms by employing the motion information captured by the two-camera imaging device. Third, we will develop new deconvolution algorithms suitable for mobile devices.