Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
This project involves the optimal aerodynamic design of unmanned aerial vehicles (UAVs), making use of stateoftheart computational fluid dynamics and aerodynamic shape optimization techniques. The algorithm development will focus on modeling and exploiting laminarturbulent transition in the optimization cycle. The project should result in new and significantly improved aerodynamic shape optimization tools. This has the potential to lead to new lowdrag and high endurance UAV systems.
Dr. David W. Zingg
Ramy Rashad
Brican Automated Systems Inc.
Aerospace studies
Aerospace and defense
University of Toronto
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.