Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreDue to its versatility, time and cost saving, additive manufacturing (AM) technology, and more specifically selective laser melting process (SLM), is replacing conventional manufacturing processes, particularly for producing complex geometry components. In this technology, the near net shape parts are incrementally built by fusing layers of powder material using an intensive heating source/ Structural stress analysis and lifing assessment via finite element (FE) analysis are well-accepted modern engineering practices within product development procedures. The use of this solution method reduces trial and error costs as well as risks of failure, among other. Because of the unique microstructure/texture of the additively manufactured superalloy products, the resulting mechanical properties are highly anisotropic as opposed to conventionally manufactured parts which are commonly isotropic. Consequently, efficiently predicting the mechanical properties and functional performance of SLM components through FE simulations become crucial. In this context, the main objective of this project is to create a reliable FE simulation framework for predicting operating performance of SLM manufactured gas turbine hot section components for Siemens Canada. In this research, advanced phenomenological material constitutive models for additive manufacturing applications will be identified and developed. Also, numerical predictions will be validated against experimental data.
Mathias Legrand
Omid Majidi
Siemens Canada
Engineering - mechanical
Energy
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.