Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreThe propagation of sound underwater is influenced by variations of the environment in range, depth and azimuth. Many sound propagation models ignore the azimuthal dependence and solve two-dimensional (2D) problem in range and depth. In this project, various mathematical techniques for applying azimuthal dependence into a full 3-D sound propagation model will be investigated. The techniques will be evaluated for computational efficiency when modelling large areas. This investigation will form the starting point for a Master’s thesis that will be carried out by the student subsequent to the completion of the internship and that will involve developing the full implementation of an efficient 3-D code. The resulting code will be a valuable tool for environmental impact assessments relating to industrial noise in the marine environment.
Dr. Ross Chapman
Melanie Austin
JASCO Research Ltd.
Geography / Geology / Earth science
Environmental industry
University of Victoria
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.