Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Based on the original Statistical Inventory Reconciliation(SIR) Test Method (Quantitative), K-folds cross validation is used to increase P(D) and decrease P(FA) by adjusting K, which are related to bias and standard deviation. There is a trade-off between bias and variance, with very flexible models (overfit) having low bias and high variance, and relatively rigid models(underfit) having high bias and low variance. When K is larger, we have lower bias and larger standard deviation. Also, K-folds cross validation is very useful, when data size is small. So this methods has a higher validity with a lower data requirement.
Xuewen Lu
Jinying Wu
Cantest Solutions
Mathematics
Oil and gas
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.