Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreThe proposed research aims at increasing the efficacy of tidal turbines by incorporating light-weight and resilient blades into a currently used turbine. For that, a recently developed 3D fiber-metal-laminate (3D-FML) material at Dalhousie University will be used. In comparison to metals that are presently used to form blades, or potentially fiber-reinforced composites, the 3D-FML would facilitate lighter weight and greater specific strength and stiffness, in a cost-effective manner. The project will design the blade using the finite element method, and fabricate it using the vacuum-assisted hand layup method. Subsequently, the integrity of the blade will be examined using various instruments that will monitor its performance in an in-service like condition, achieved by testing the turbine in a large tank, with controlled flow velocity, using the Aquatron facilities of Dalhousie University.
Farid Taheri
Davide De Cicco
Glas Ocean Electric
Engineering - mechanical
Energy
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.