Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreIn water quality management, mathematical models are used to understand ecological processes, to predict aquatic ecosystem dynamics, to evaluate management alternatives/climatic scenarios, and to support the policy making process. Environmental models involve substantial uncertainty due to their structure, unknown parameters, and errors associated with calibration data and other inputs. This research program aims to address the urgent need for credible modelling tools by combining environmental mathematical modelling with Bayesian analysis. Specifically, we will develop sediment diagenesis models for the Georgian Bay and the Hamilton Harbour to evaluate the likelihood of an increased nutrient release from the sediments to delay their response to external nutrient loading reduction efforts. The two systems were selected due to their variant degree of eutrophication problems and multitude of anthropogenic stressors (urbanization, agriculture) in the corresponding watersheds. The modelling products of this project will benefit tremendously our industrial partner, as they have broad applicability to Canadian Agencies that need scientifically-robust projections to make decisions that have considerable socioeconomic implications. Sound environmental management can only result from an in-depth assessment of political/social factors, scientific knowledge, and economic impacts. The proposed methodological framework can be very useful in this direction and can facilitate decisions for sound resource allocation.
Maria Dittrich
Phuong Doan
University of Toronto
Environmental sciences
Environmental industry
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.