Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
We will develop an algorithm for a small unmanned glider (a plane-shaped drone) to soar autonomously. Gliders gain energy from the atmosphere by flying in circles in streams of rising air, called thermals. This allows them to stay aloft for extended periods of time, in the range of several hours. Detecting thermals, as well as harvesting energy from them, with an automatic pilot, is the challenge that we are tackling in this work. We will write the program, as well as test it, both in a flight simulator and in the field (with a remote-controlled drone, flying autonomously). The partner organization builds glider-based autopilot solutions for the purpose of monitoring large and remote areas such as forests and fields, hence the need for a reliable thermalling flight controller.
Meyer Nahon
Fares El Tin
TandemLaunch Technologies Inc.
Engineering - mechanical
McGill University
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.