Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Despite the advances of Machine Learning, the models are still being considered black-boxes that are difficult to diagnose and explain. The model performance diagnostic measures are critical to the assessment of the model’s relevance, accuracy and robustness. Good models’ performance is the primary enabler of their successful deployment in real-life applications. However, even if the models perform well, it is not known why the models predict the way they do, that is, which input variables are responsible for the models’ predictions. The purpose of the research is two-prone: 1) to identify the relationship between the measures of model performance and recommend which measures should be used in the model production environment, and, 2) develop the methodology of explaining machine learning models in terms of the models’ inputs, as well as, other, potentially relevant, variables, not selected in the model.
Jia Yuan Yu
Ningsheng Zhao
Daesys Inc.
Other
Professional, scientific and technical services
Concordia University
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.