Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreIn this postdoc, we plan to focus on computer vision tasks where existing deep learning methods require lots of labeled samples to work well. Acquiring labeled samples is time-consuming and often impractical. Thus, we investigate three different classes of methods to alleviate the label scarcity problem: active learning, weakly-supervised learning, and few-shot learning. In active learning, the goal is to label the most important samples to maximize the performance of the model while reducing labeling costs. In weakly supervised learning, the goal is to train models using weak labels. As a result, we can annotate samples with incomplete labels that are cheaper to collect. For instance, instead of annotating full masks for the task of segmentation, a cheaper alternative is to only annotate a single point per object. In the few-shot setup, the goal is to have models that can perform a task with only a few labeled samples. For these problem setups, we plan to propose new methods by building on our previous work and on promising methods that exist in the literature. Having deep learning models that can learn well with few labeled data can lead to significant contributions to the scientific community and many real-life applications.
Derek Nowrouzezahrai
Issam Laradji
Element AI
Engineering - computer / electrical
Professional, scientific and technical services
McGill University
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.