Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreAcidification of fetal blood presents one of the greatest risks to the fetus during childbirth. Current monitoring technologies focusing on recording fetal heart rate are poor indicators of fetal stress levels, and provide minimal assistance in clinical decision-making. This is due to a lack of understanding about which features of fetal heart rate best represent blood acid levels. Since fetal heart rate is one of the most inexpensive and easily obtained measurements of fetal stress, identifying the properties of fetal heart that best predict the outcome of labour is a highly relevant research goal. Mathematical and computer modeling presents an opportunity to analyze different features of fetal heart rate in a systematic way, without the need for expensive or impossible to perform experiments. The goal of our research is to develop a mathematical model that reproduces observed changes in fetal heart rate during labour, and precisely correlate these changes to blood acid levels. This will allow researchers and clinicians alike to better monitor fetal stress from easily obtained signals.
Huaxiong Huang
Nathan Gold
Mathematics
York University
Globalink Research Award
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.