Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreHeat management in semiconducting nanomaterials requires the design of engineered artificial structures, known as metamaterials, where thermal properties can be tuned almost at will by microstructural modifications. Testing a broad range of nanostructures for the particular device applications, with predictive behavior, is a grand challenge especially because of the difficulties associated with the experimental synthesis of the pristine samples, their char- acterization and property calculations. For example, the silicon-on-insulator technology, used as the building block of sensors designed by our industrial partner, gives rise to particularly complex phenomenology. These materials exhibit anisotropic heat flow that often greatly influences their heat transport behavior and thus impacts device performance either in a positive or negative way. Therefore, there is a strong industrial need to develop a material toolbox, with highly predictive structure-property relations to match particular device applications. Our goal is thus to respond to this need by mean of molecular dynamic simulations by constructing a multidimensional phase diagram that will incorporate a broad range of metamaterial structures and physical properties in order to explain, design, and propose experiments for new directions with the precise property predictions.
A Srikantha Phani;Alireza Nojeh;Debashish Mukherji
Céline Ruscher
Lumiense Photonics
Engineering - mechanical
Professional, scientific and technical services
University of British Columbia
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.