Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreIndustries using fossil fuels as their energy source are contributing to global warming as the required energy for their processes is supplied by combusting fossil fuels. CO2, a greenhouse gas, is a products of combustion. Using electricity generated by hydropower as the heat source may eliminate CO2 emission. One of the commercially available electric heaters is the direct-current plasma torch, where the gas is heated to high temperatures. Because air is readily available and free, it is used as the primary plasma forming gas. Although this type of torch does not produce CO2, it produces nitrogen oxides (NOx), considered a pollutant. In this project, a detailed numerical model will be developed to predict NOx formation of DC plasma toch, and address the existing challenges in minimizing the NOx formation at the source, and find the optimum conditions for minimizing NOx emission. The model will be validated experimentally.
Javad Mostaghimi
Elham Dalir
PyroGenesis Inc.
Engineering - mechanical
Manufacturing
University of Toronto
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.