Visualization and Characterization of Novel Coronavirus Structure using Ultrasonic-Atomic Force Microscopy Targeted for anti-COVID-19 Therapeutics

SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, displays a coronashaped layer of spikes which play fundamental role in the infection process. Recent structural data suggest that the spikes possess orientational freedom and the ribonucleoproteins segregate into basketlike structures. How these structural features regulate the dynamic and mechanical behavior of the native virion, however, remain unknown. By imaging and mechanically manipulating individual, native SARS-CoV-2 virions with atomic force microscopy, here we show that their surface displays a dynamic brush owing to the flexibility and rapid motion of the spikes. The virions are highly compliant and able to recover from drastic mechanical perturbations. Their global structure is remarkably temperature resistant, but the virion surface becomes progressively denuded of spikes upon thermal exposure. Thus, both the infectivity and thermal sensitivity of SARS-CoV-2 rely on the dynamics and the mechanics of the virus.

Faculty Supervisor:

Seonghwan Kim;Raimar Loebenberg;Mohamed Faizal Abdul-Careem

Student:

Zahra Abooali Zadeh

Partner:

Applied Pharmaceutical Innovation

Discipline:

Engineering - mechanical

Sector:

University:

Program:

Accelerate

Current openings

Find the perfect opportunity to put your academic skills and knowledge into practice!

Find Projects