Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Use of thermoplastics for engineering applications has become critical over the past decade with the automotive industry looking for creative ways to reduce vehicle weight. As such, linear vibration welding is gaining acceptance as a specialized method for joining thermoplastic parts. This research will focus on amorphous resins used in automotive light-weighting applications. Amorphous plastics typically have better impact resistance, but less resistance to fatigue cracking and stress cracking when compared to semi-crystalline plastics. The type of material combinations and welding parameters (e.g., frequency, amplitude, weld pressure) on the properties and strength of the welds will be studied. Currently, Fiat Chrysler Automobiles have compatibility charts of plastic combinations that can be effectively welded together; however, these charts often have no indication of weld strength or other characteristics of the weld bond. This project will determine the vibration welding and each material combination’s resistance to environmental stress cracking.
Afsaneh Edrisy
Stephen Passador
Engineering - mechanical
Manufacturing
University of Windsor
Accelerate International
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.