Oscillation-based Fuel Cell Diagnostics

In this project, we propose two diagnostic tools that can identify dynamical processes in various fuel cell operating regimes, using the difference in the time constant of these processes. For example, conductive transport of electrons is faster than diffusive transport of gasses. We oscillate current and pressure at different frequencies, and measure the cell voltage. […]

Read More
Nonlinear Frequency Response Analysis for Fuel Cell Diagnostics

In order to enhance the capabilities of fuel cell test stations, a new tool for fuel cell diagnostics based on nonlinear frequency response analysis (NFRA) will be developed. NFRA applies a perturbation of the operating current and measures the voltage response of the cell. By varying the frequency of the perturbation, processes with different dynamics […]

Read More