Software Acceleration of Video Noise Filtering and its integration into real-time video applications

The project is mainly in the domain of achieving real-time computational speed of methods to  remove noise from video signals (for example, those taken by a professional cinema camera). Specifically, in this project, we propose first to improve the speed of current technology that we have developed in previous MITACS projects, in order to make it commercially valuable and second to integrate this new real-time technology into video applications that require noise-free inputs in order for them to have high performance output.

Multi-Fidelity Design Optimization of Hydro Turbine Runner Blades

From an energy production perspective, the mobile component of the turbine, the runner, plays a key role in the operation of a water turbine. In the present competitive situation of deregulated energy markets, there is a great demand for more efficient runners which can withstand severe operating conditions. Traditional trial-and-error runner design methods largely depend on the designers’ experience, and always need long design cycles.

Development of an image-guided navigation platform for an automated and MRI-compatible robotic needle guiding device for percutaneous procedures

Prostate cancer is the second most cancer related death in men, accounting for over 111 M$ yearly in Canada. Current prostate biopsy or therapy procedures such as transperineal brachytherapy use transrectal ultrasound guidance and  a  template to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the  brachytherapy needles.

A novel passive wireless sensor for the measurement of AC/DC electric field in the vicinity of high voltage apparatus

The existing technologies used for monitoring the voltage and the electric field in the vicinity of the high voltage devices are bulky and expensive. On the other hand, maintenance of the monitoring devices requires specific safety precautions. In this research project, a small and inexpensive electric field sensor is proposed. They are passive and require no source of power. This eliminates the need of changing the batteries and direct contact to the high voltage apparatus. The interrogation system will be wireless that makes the distant measurement possible.

Programming Techniques for QUBO Compatible Processors

The main problem this internship project explores is the selection, conversion, and encoding of mathematical models that pertain to the finance industry for processing on available types of analog optimization processors. This research investigation aims to develop new algorithms and code that take advantage of an analog optimization process which acts as an “oracle” for a classical Turing Machine computer. This will be done by developing methods to translate a range of problems into the ideal form for currently available adiabatic annealing hardware.

Tools for Enhancement of Power System Security

The aim of the proposed research cluster is to advance the state of the art of secure operation of power systems by developing new methods and tools. A power system is expected to perform within specified operating boundaries of system voltage and frequency under normal conditions when there are no component outages. Further, it should also be able to deliver the same performance under single outages that are most likely to occur. Two ways of advancing the state of the art will be addressed in this research cluster.

Optimal Placement of Fault Circuit Indicator to Improve the Reliability of Distribution Systems using CYME Reliability Module

Within the past decades, there has been a significant growth in the electric power systems that have resulted in a large increase in the development of transmission and distribution lines. Distribution system is the final connection between the utility provider and the customers and constitutes a major component of the power system. However, since most distribution lines are overhead and spread over a wide area, they are susceptible to unexpected events such as short circuit fault or an open circuit fault.

Integration of Technologies for Smart Control of Micro Grids

S2E Company is developing a Smart Community in London, Ontario. This community will have the state of the art sustainable practices in community development. This community will be Net ZERO energy which simply means that it has zero net energy consumption and zero carbon emissions annually, minimize water usage, designed with sustainable storm water management, built electric car ready, emphasis Smart Grid technology and demonstrate a microgrid.

Feasibility Study of a Community Microgrid: Key Components, Control and Communications

This project involves the feasibility study of specific community microgrid technologies for the development of a Smart Community in London, Ontario by SE2 Technologies Inc. A first of its kind, such a community will represent a learning platform for universities and other cities in Canada. The smart community will consist of a minimum of 50 residential units situated in London, Ontario, and will be Net ZERO energy, built electric car ready and emphasize Smart Grid technology including the demonstration of a community microgrid.

Fabrication, characterization and modeling of novel CMOS-compatible polymer-based redox memory structures

A cross-disciplinary collaboration between investigators in Electrical Engineering and Chemistry has lead to the discovery of a promising new material system for nanoelectronics. This material system is a conducting polymer / inorganic metal oxide heterojunction, electrochemically grown onto a crossbar structure. This heterojunction produces transient current-voltage characteristics that can be controlled by electric fields and exhibits memory effects.

Pages