A mobile soil-flushing and enhanced oxidation (MSFEOP) system for the remediation of petroleum brownfields

Petroleum contamination in soil and groundwater caused by the leakage of underground storage tank is one of the most frequently occurred incidents in North America. The cost of remediation can be significantly increased if the contamination was not treated in time or the site is far away from the waste management facility. a mobile soil-flushing and enhanced oxidation (MSFEOP) system is therefore developing for an accessible and affordable options for site remediation.

Automated Driver Drowsiness Control Technology Using Artificial Intelligence-based Decision Support System

The main purpose of this project is to develop the methodology to detect and predict driver drowsiness at the early stages using physical and physiological variables. A feasibility test is conducted to evaluate the accuracy and performance of the proposed methodology. The existing databases are leveraged to extract the required data. Signal processing, image processing, AI techniques and decision-making methods are utilized to analyze data for monitoring, detecting, predicting and controlling driver drowsiness.

Experimental and Analytical Study on Sustainable Sandwich Structures made from Recycled Plastic Core and PET FRP facing

The project seeks to discover the optimum design and commercialization strategy for newly developed sandwich structures derived from recycled plastic for the civil engineering sector. The sandwich structures are highly sustainable and could potentially consume large amounts of the rapidly produced plastic waste. The final sandwich product would have the potential to be used in various applications such as roof panels and exterior/interior walls of buildings.

Sustainable Development of Late-Life post-SAGD Reservoirs for Energy Recovery

What is left after late-life SAGD production is a large amount of valuable energy in the form of heat contained in the reservoirs. Instead of leaving behind the stored energy in a hot reservoir after many years of SAGD operation, considering energy recovery from post-SAGD reservoirs leads to lower carbon emissions by saving energy already injected in the reservoir rather than leaving it to avoid burning more natural gas; saving money for SAGD operators and helping to make operations more sustainable.

Microfluidic Hydrogel-based Biomolecule Detection Through Novel Advection Transport

Healthcare requires the early and accurate detection of disease indicators, be they small biomolecules or viruses, which is vital for successful treatments, preventative medicine and disease prevention. Improving turnaround times for early and accurate detection will improve patient care, enable the mass screening of large populations during outbreaks and effectively reduce the diagnostic burden. We have developed a small-scale filter detection device to provide high sensitivity, while being inexpensive and portable for diagnostics at the point of care.

Point-of-care breath analyzer for early-stage disease diagnosis

As the third documented emergence of an animal-to-human coronavirus during the past two decades (Severe Acute Respiratory Syndrome in 2002, Middle East Respiratory Syndrome in 2012), the current pandemic and near-certainty of future epidemics demands intensified surveillance and proactive screening. Definitive therapy for novel Coronavirus Disease 2019 (COVID-19) is likely at least half a year away. Current standard-of-care diagnostic testing with real-time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) is resource intensive, costly and inaccurate.

Tunable, High Throughput UV Exposure Device

Ultraviolet-C (UV) light is able to damage cells and organic matter to make water, air, and high touch surfaces safe for the public. UV-C lamps render microorganisms harmless by damaging their cell structure and DNA. UV-C based water treatment has safely been used for decades by water utilities around the world. Recent developments in technology and research have allowed for an even wide application to clean surfaces, air, and water using UV light.

Development and market assessment of a reliable and efficacious anthocyanin-based healthy food ingredient

To date, there is a growing attention to the use of plant-food bioactives in disease prevention. Anthocyanin, a colorful plant pigment extracted from purple and blue color fruits and vegetables has been investigated broadly for its cancer preventive and immunity boosting properties. However, anthocyanin degrade during the conventional food processing conditions such as exposure to high temperature and light. Moreover, the benefits of anthocyanin could reduce due to gastric acid and gut enzymes.

Assessment of the feasibility of manufacturing and marketing carvacrol-incorporated natural health products

Antibiotic therapy has been the primary approach for strep throat. Although various antibiotics, including penicillin, are effective, bacteriologic, and clinical treatment failures have been reported. Patients are more concerned about soothing the pain during the infection, and green/natural drug therapy with less or no adverse side effects are becoming popular. From preliminary studies and literature, carvacrol has been identified as a potential candidate for antibiotic therapy alternatives.

Biosurfactant Production from Seafood Processing Waste

This project aims at developing an innovative technology through the utilization of fish waste as substrates for biosurfactant production. Through the proposed approach, fish waste will be recovered into fishery peptone and being used as a nutrient substrate for the synthesis of biosurfactant products with promising market values. The outcomes of this project will directly provide the fishery industry a new model of fish waste reuse and management by "turning waste into valuable products". It will also help reduce waste discharge and protect the environment.

Pages