In a context of global warming, it is essential to find green alternatives to public transportation. The National Smart Vehicle Demonstration Project aims to improve mobility options for Canadians by advancing the implementation of low-speed electrified autonomous shuttles (LSAs). This project aims to support job growth in the design of technologically advanced electrification, sensing, communication and cybersecurity tools that support LSAs.
Transportation that uses green energy is environmentally friendly and helps to reduce greenhouse gas emission. But there is a tension between the stakeholders, policy makers and public on their economic return, policy implementation and perception on innovation in technology in transit respectively.
The project deploys and try out a coordination model and platform that helps developers to build smart city applications that run in large scale, dynamic fog computing infrastructure. Fog computing is a computing infrastructure that involves devices across the edge network such as smart phones, smart cars, the access network such as Wi-Fi routers, modems and the cloud servers.
Carsharing is a service where members have access to a fleet of shared vehicles distributed across a city. Members can book a vehicle when needed, allowing for the convenience of vehicle ownership while reducing the need to own private vehicles. The two primary forms of carsharing are a free-floating or free floating model, where users can pick up and drop off vehicles anywhere inside a service area, and a round-trip or round trip model, where members pick up the vehicle at a specific location and later return it to that starting location.
In Montreal, pavement distresses are causing serious problem to the road network with more than half of the road considered in a bad and a very bad shape. Many pavement inspection methods are developed in order to inspect, detect, locate, and classify pavement distresses; however, these methods are not efficient in term of time, cost, and accuracy. In our project, we aim to develop a new approach in detecting, classifying, and locating pavement distresses using conventional unmanned autonomous vehicle LiDAR.
Nowadays, automotive companies are seeking to use prospective robust, light-weight, anti-corrosive and cost-effective composites such as fibre reinforced polymer (FRP), instead of traditional materials like steel or aluminum alloy, to make their products more competitive in the market. The sponsor company in this project, Litens Automotive Group, is investigating the feasibility of adopting FRP to manufacture high torque capacity drive pulleys.
Li-ion batteries (LIBs) are currently the most important power source for a wide variety of applications such as cell phones, laptops, computers and other portable electronics. They are also considered as very promising storage/power systems for future electric/hybrid-electric powered transportation. Although clever cell design and improvements in cell subcomponents can bear potential for volume and weight reduction, major developments in high energy density cathode and anode active materials are essential.
Air pollution is a major environmental risk to human health, and air quality has become an increasing concern in the industrialized world. Rapid and accurate detection and characterization of airborne particulates is crucial for monitoring and improving air quality. In this proposal, we develop a compact, cost-effective, computational lens-free holography platform for high-throughput characterization of airborne particulates.
Problem: Airports are increasingly important, both economically and socially, for the movement of people and goods. A major risk faced by airports is the potential for collisions between aircraft and birds (bird strikes). Bird strikes are dangerous and expensive, with costs including the repair of damaged aircraft and of closed runways delaying flights and leaving planes in the air until they are cleared.
Objective: We will determine whether pest control of insects around airfields can decrease the abundance of foraging birds near runways and reduce the risk of bird strikes.
Liquefied natural gas (LNG) has up to 20% CO2 and 90% NOx fewer emissions than diesel; making it a cleaner alternative fuel for mobile applications. LNG has high volumetric energy density and is cost effective ($0.5 cheaper than diesel gallon equivalent). However, LNG is stored at low temperatures (-162ºC) and releases boil-off gas that contributes to the greenhouse gas (GHG) emissions. In collaboration with Westport Power Inc., the global leader in natural gas engines, we aim to identify the weaknesses in the LNG distribution chain to reduce the GHG emissions and the LNG delivery cost.