National Smart Vehicle Demonstration and Integration Project

In a context of global warming, it is essential to find green alternatives to public transportation. The National Smart Vehicle Demonstration Project aims to improve mobility options for Canadians by advancing the implementation of low-speed electrified autonomous shuttles (LSAs). This project aims to support job growth in the design of technologically advanced electrification, sensing, communication and cybersecurity tools that support LSAs.

A stakeholder analysis of outreach opportunities to support low-carbon smart transitions for transit modernization

Transportation that uses green energy is environmentally friendly and helps to reduce greenhouse gas emission. But there is a tension between the stakeholders, policy makers and public on their economic return, policy implementation and perception on innovation in technology in transit respectively.

Building Fog Applications for Smart City: a Coordination Approach

The project deploys and try out a coordination model and platform that helps developers to build smart city applications that run in large scale, dynamic fog computing infrastructure. Fog computing is a computing infrastructure that involves devices across the edge network such as smart phones, smart cars, the access network such as Wi-Fi routers, modems and the cloud servers.

Towards understanding adoption of Carsharing

Carsharing is a service where members have access to a fleet of shared vehicles distributed across a city. Members can book a vehicle when needed, allowing for the convenience of vehicle ownership while reducing the need to own private vehicles. The two primary forms of carsharing are a free-floating or free floating model, where users can pick up and drop off vehicles anywhere inside a service area, and a round-trip or round trip model, where members pick up the vehicle at a specific location and later return it to that starting location.

Pavement Distress Detection Using Conventional Unmanned Autonomous Vehicle LiDAR

In Montreal, pavement distresses are causing serious problem to the road network with more than half of the road considered in a bad and a very bad shape. Many pavement inspection methods are developed in order to inspect, detect, locate, and classify pavement distresses; however, these methods are not efficient in term of time, cost, and accuracy. In our project, we aim to develop a new approach in detecting, classifying, and locating pavement distresses using conventional unmanned autonomous vehicle LiDAR.

Thermal Analysis of Poly-V Belt Transmission System

Nowadays, automotive companies are seeking to use prospective robust, light-weight, anti-corrosive and cost-effective composites such as fibre reinforced polymer (FRP), instead of traditional materials like steel or aluminum alloy, to make their products more competitive in the market. The sponsor company in this project, Litens Automotive Group, is investigating the feasibility of adopting FRP to manufacture high torque capacity drive pulleys.

High energy density lithium ion cells/batteries with excellent electrochemical performance and safety - Year two

Li-ion batteries (LIBs) are currently the most important power source for a wide variety of applications such as cell phones, laptops, computers and other portable electronics. They are also considered as very promising storage/power systems for future electric/hybrid-electric powered transportation. Although clever cell design and improvements in cell subcomponents can bear potential for volume and weight reduction, major developments in high energy density cathode and anode active materials are essential.

Computational Lens-free Holography for Rapid Monitoring and Characterization of Airborne Particles

Air pollution is a major environmental risk to human health, and air quality has become an increasing concern in the industrialized world. Rapid and accurate detection and characterization of airborne particulates is crucial for monitoring and improving air quality. In this proposal, we develop a compact, cost-effective, computational lens-free holography platform for high-throughput characterization of airborne particulates.

Reducing birdstrike risks at airports by integrated pest management of insects

Problem: Airports are increasingly important, both economically and socially, for the movement of people and goods. A major risk faced by airports is the potential for collisions between aircraft and birds (bird strikes). Bird strikes are dangerous and expensive, with costs including the repair of damaged aircraft and of closed runways delaying flights and leaving planes in the air until they are cleared.
Objective: We will determine whether pest control of insects around airfields can decrease the abundance of foraging birds near runways and reduce the risk of bird strikes.

Thermodynamic Analysis of Liquefied Natural Gas Refueling Stations and Onboard Fuel Storage Tanks for Mobile Applications - Year two

Liquefied natural gas (LNG) has up to 20% CO2 and 90% NOx fewer emissions than diesel; making it a cleaner alternative fuel for mobile applications. LNG has high volumetric energy density and is cost effective ($0.5 cheaper than diesel gallon equivalent). However, LNG is stored at low temperatures (-162ºC) and releases boil-off gas that contributes to the greenhouse gas (GHG) emissions. In collaboration with Westport Power Inc., the global leader in natural gas engines, we aim to identify the weaknesses in the LNG distribution chain to reduce the GHG emissions and the LNG delivery cost.