Real-time Supervision of Electric Arc Duration in a High Voltage Circuit Breaker Based on the Analysis of Electromagnetic Emissions

The detection of a power circuit breaker's operation through measuring electromagnetic emissions produced by the arc in the interruptor tube is a promising method for ensuring the remote supervision of these devices and for identifying operation faults before they lead to an explosion. Project researchers will develop an algorithm to determine computationally the position of the faulty interruptor tube. This algorithm will use as inputs a minimal number of measure points and will have to deduce the position based on the signals' arrival times at each of the measure points.

Development of a Space-time Finite Element Formulation for fast AC Loss Calculation in High Temperature Superconductors

The intern will develop a new space-time finite element formulation to solve steady state problems involving high temperature superconductors in order to evaluate rapidly the losses in a given application. This space-time formulation will also be coupled to a mesh adaption program used to refine the solution only where it is really necessary. This formulation is expected to be advantageous over current formulation since it will avoid using very fine spatial and geometric discretization in the entire simulated domain.

Development of Production Planning Models

The Scotsburn Dairy Group produces over 300 ice cream products for many customers in a highly variable, seasonable market. Currently, no software packages exist in the market to help small to medium-sized dairies manage their production planning and scheduling. By working with Scotsburn, a production scheduling tool will be created which is tailored to the complex needs of a dairy production facility. This tool will help Scotsburn to plan their production efficiently and effective to make the most of the capacity and remain competitive.

Development of Mathematical Models for Flow in a Porous Media

Continuous fiber reinforced thermoset composite structures can be produced by injecting liquid resins into a mold where it hosts pre-placed fiber reinforcement. One of the common processes presently utilized in the industry is the Resin Transfer Molding, abbreviated as RTM. In this process, fiber preforms are placed in a closed mold and resin is injected into the mold to impregnate the preform. After the resin cures, the mold is opened and the final composite part is de-molded. RTM can produce complex and high quality composite components in series production with smooth surface finishing.