Enhanced analytical techniques for offshore structural integrity

Lyan Eng. Developments Inc. is looking to find novel ways to make processes in the energy sector more cost efficient. The results from this project have significant applications to pipeline integrity and platform integrity for sub-sea and off-shore applications. The robust failure prediction models are going to help engineers in various disciplines to accurately predict failure in complex structures.


Production of bitumen in Canada has increased considerably in the last decade. Due to its heavy nature, bitumen needs upgrading in order to make it marketable. Partial upgrading, where bitumen is upgraded into transportable oil that meets pipeline specifications, has the potential to maximize the benefits of bitumen commercialization. However, there is not any economical commercial-ready partial upgrading technology in Canada.

Conductive nanocomposite Leak Detection System (LDS) for oil pipeline applications

Transportation of the oil and gas through pipelines network remains a crucial infrastructure for sustaining the economic growth of Canada. A major concern has been the frequent incidents of oil spills which can cause catastrophic failures if remained undetected. Despite a plethora of Leak Detection Systems being used with state-of-the-art technologies, these monitoring systems can only detect a small fraction of oil spills.

Data-driven Adaptive Model Predictive Control of Heat produced by Resistive Heating Elements in Enhanced Oil Recovery

NEXEN has proposed a novel and advanced thermal EOR technique for oil sands recovery, which is both economically efficient and environmentally sustainable as compared to current thermal oil recovery method (SAGD). The focus of this research project is to investigate, analyze, improve, and design heat transfer modeling and control strategies for proposed enhanced oil sands recovery so that it could be commercialized in future. Rate of heat transfer in proposed technique is low as compared to SAGD, which is directly proportional to rate of oil recovery.

Development of a hybrid seismic data inversion method for determining well-drilling location at complex geophysical area - Year two

Due to the current economic downturn, especially the lower crude oil price, the drilling success rate become the most important goal for any oil/gas company. For a start-up company, any failure in drilling will be a disaster. To this end, the Deep Treasure Corp wishes that through the combination of mature hydrocarbon prediction techniques and new research results in seismic inversion, the success rate of hydrocarbon prediction, the theoretical basis for well placement can be provided in Roncott field, which will improve the success rate in drilling.

Development and application of molecular tools to assess the acute and chronic impacts of petroleum hydrocarbons on birds - Year 2

The Northern Gateway Pipeline and similar projects propose to transport oil from Alberta to tidewater terminals in British Columbia and eastern Canada. Accidental release of petroleum distillates and related by-products would have consequences on the marine ecosystem. To evaluate spill implications for seabirds, we propose to develop and apply molecular tools to assess toxicological and health endpoints in selected seabird monitoring species, using a combination of laboratory and field research.

Enhanced Techniques for History Matching and Forecasting of Petroleum Reservoir Data

History matching refers to calibrating numerical or analytical models by the observed data. However, this task can be very challenging in presence of complex geology and/or many unknown data .
The purpose of this project is to introduce and apply the new techniques for efficient creation of predictive history-matched models for reservoir characterization of conventional and unconventional reservoirs, which can be used for probabilistic forecast and uncertainty quantification.

Emissions control and reduction for natural gas engines

The use of natural gas as a fuel for on-road commercial vehicles offers significant benefits, including lower greenhouse gas emissions. Methane, the main component of natural gas, has many virtues as a fuel. However, its stability makes it harder to react in an engine. This introduces two challenges: first, an ignition source is needed to start the combustion (unlike diesel, which is self-igniting), and second, it is hard to remove any left-over methane from the exhaust. This internship will help to address both these factors.

An Integrated model of Geomechanics and a Multiporosity Reservoir Simulator to Investigate Improved Recovery Techniques in Shale Reservoirs

Shale reservoirs have become a very important source of hydrocarbons, especially in North America. Shales are rocks with very low permeability and therefore, produce the hydrocarbons stored in them is difficult. In order to do it, oil companies have to inject high pressurized fluids to break the rock. But, by using this unique strategy, most hydrocarbons are being left in the subsurface. This work aims to use mathematical and numerical models to investigate different methods that can lead to recover a bigger portion of the hydrocarbons stored in shale reservoirs.

Construction of a Numerical Model for Hydraulic Fracture Propagation in Multiple-Porosity Shale Petroleum Reservoirs

Shale reservoirs store gigantic volumes of petroleum (oil and gas). However, because of the complex nature of the reservoir rock, it is difficult to recover the oil and/or gas stored in shales. Under normal conditions, it is possible to extract only as much as 10% of the resources in place, thus leaving behind a huge potential that promises to satisfy the energy needs of Canada for several decades.