Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Rational protein design has had a tremendous impact on pharmaceutical, agriculture, and chemical industries over the past 30 years, by focusing exclusively on individual proteins and their intrinsic activities. The next generation of protein design tasks will seek to modify function inside living cells, competing and interacting directly with pre-existing cellular machinery. Modifying systems in living cells will open a new wave of biotechnology applications, such as living drug implants and diagnostic tools. However, effectively introducing new or engineered proteins into a living cell system requires attentive coordination to ensure that designed protein surfaces do not inadvertently interact with other host cell proteins and disrupt otherwise vital activities. Biological pathways are also very sensitive to perturbation, which can often result in cell death or functional failure. This partnership aims to build a predictive computational technology to ensure that designed protein surfaces do not display recognition features of proteins in the host cell that will minimize these unwanted interactions.
Michael Garton
Haleh Shahbazi
Cyclica
Engineering - biomedical
Professional, scientific and technical services
University of Toronto
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.