Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
A simple and facile route for the construction of highly sensitive electrochemical enzyme biosensors has been proposed using carbon nanotube (CNT) complexes with a conducting poly(thiophene) polymer. Glucose oxidase was used as a model enzyme for the construction of the advanced biosensors. Glucose biosensors, exhibiting sensitivity higher than any biosensor based on CNTs and other polymers reported, were prepared by depositing CNT-polymer loaded polymer layers that contained entrapped glucose oxidase onto gold electrodes. It has been shown that the CNT-polymer complexes offer an enzyme-friendly versatile platform for the immobilization of enzymes with increased electron-transfer rate, high electrical conductivity, and excellent film quality. The obtained results pave the way for the development of other advanced CNT-based biosensors. Further investigations will involve elimination of interferences and incorporation of other enzymes for highly sensitive detection of H2O2, ethanol, and NADH (a cofactor in many naturally occurring enzymatic reactions) etc.
Dr. Alex Adronov
Xin Pang
Chemistry
Life sciences
McMaster University
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.